Cargando…
Asymmetry between right and left fundus images identified using convolutional neural networks
We analyzed fundus images to identify whether convolutional neural networks (CNNs) can discriminate between right and left fundus images. We gathered 98,038 fundus photographs from the Gyeongsang National University Changwon Hospital, South Korea, and augmented these with the Ocular Disease Intellig...
Autores principales: | Kang, Tae Seen, Kim, Bum Jun, Nam, Ki Yup, Lee, Seongjin, Kim, Kyonghoon, Lee, Woong-sub, Kim, Jinhyun, Han, Yong Seop |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795182/ https://www.ncbi.nlm.nih.gov/pubmed/35087071 http://dx.doi.org/10.1038/s41598-021-04323-3 |
Ejemplares similares
-
Author Correction: Asymmetry between right and left fundus images identified using convolutional neural networks
por: Kang, Tae Seen, et al.
Publicado: (2022) -
Asymmetry between right and left optical coherence tomography images identified using convolutional neural networks
por: Kang, Tae Seen, et al.
Publicado: (2022) -
Development of fully automated anterior chamber cell analysis based on image software
por: Kang, Tae Seen, et al.
Publicado: (2021) -
Estimation of best corrected visual acuity based on deep neural network
por: Lee, Woongsup, et al.
Publicado: (2022) -
Translation of paired fundus photographs to fluorescein angiographs with energy-based cycle-consistent adversarial networks
por: Kang, Tae Seen, et al.
Publicado: (2023)