Cargando…
Quality assessment standards in artificial intelligence diagnostic accuracy systematic reviews: a meta-research study
Artificial intelligence (AI) centred diagnostic systems are increasingly recognised as robust solutions in healthcare delivery pathways. In turn, there has been a concurrent rise in secondary research studies regarding these technologies in order to influence key clinical and policymaking decisions....
Autores principales: | Jayakumar, Shruti, Sounderajah, Viknesh, Normahani, Pasha, Harling, Leanne, Markar, Sheraz R., Ashrafian, Hutan, Darzi, Ara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795185/ https://www.ncbi.nlm.nih.gov/pubmed/35087178 http://dx.doi.org/10.1038/s41746-021-00544-y |
Ejemplares similares
-
The diagnostic and triage accuracy of digital and online symptom checker tools: a systematic review
por: Wallace, William, et al.
Publicado: (2022) -
Are disruptive innovations recognised in the healthcare literature? A systematic review
por: Sounderajah, Viknesh, et al.
Publicado: (2021) -
The Reliability and Quality of YouTube Videos as a Source of Public Health Information Regarding COVID-19 Vaccination: Cross-sectional Study
por: Chan, Calvin, et al.
Publicado: (2021) -
A national survey assessing public readiness for digital health strategies against COVID-19 within the United Kingdom
por: Sounderajah, Viknesh, et al.
Publicado: (2021) -
Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol
por: Sounderajah, Viknesh, et al.
Publicado: (2021)