Cargando…
Predictive structured–unstructured interactions in EHR models: A case study of suicide prediction
Clinical risk prediction models powered by electronic health records (EHRs) are becoming increasingly widespread in clinical practice. With suicide-related mortality rates rising in recent years, it is becoming increasingly urgent to understand, predict, and prevent suicidal behavior. Here, we compa...
Autores principales: | Bayramli, Ilkin, Castro, Victor, Barak-Corren, Yuval, Madsen, Emily M., Nock, Matthew K., Smoller, Jordan W., Reis, Ben Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795240/ https://www.ncbi.nlm.nih.gov/pubmed/35087182 http://dx.doi.org/10.1038/s41746-022-00558-0 |
Ejemplares similares
-
Improving risk prediction for target subpopulations: Predicting suicidal behaviors among multiple sclerosis patients
por: Barak-Corren, Yuval, et al.
Publicado: (2023) -
Prediction of Suicide Attempts Using Clinician Assessment, Patient Self-report, and Electronic Health Records
por: Nock, Matthew K., et al.
Publicado: (2022) -
Implementing Machine Learning Models for Suicide Risk Prediction in Clinical Practice: Focus Group Study With Hospital Providers
por: Bentley, Kate H, et al.
Publicado: (2022) -
Network analysis of unstructured EHR data for clinical research
por: Bauer-Mehren, Anna, et al.
Publicado: ( 201) -
Integrating Structured and Unstructured EHR Data for Predicting Mortality by Machine Learning and Latent Dirichlet Allocation Method
por: Chiu, Chih-Chou, et al.
Publicado: (2023)