Cargando…
Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media
The ability to explain why the model produced results in such a way is an important problem, especially in the medical domain. Model explainability is important for building trust by providing insight into the model prediction. However, most existing machine learning methods provide no explainabilit...
Autores principales: | Zogan, Hamad, Razzak, Imran, Wang, Xianzhi, Jameel, Shoaib, Xu, Guandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795347/ https://www.ncbi.nlm.nih.gov/pubmed/35106059 http://dx.doi.org/10.1007/s11280-021-00992-2 |
Ejemplares similares
-
Deep learning for misinformation detection on online social networks: a survey and new perspectives
por: Islam, Md Rafiqul, et al.
Publicado: (2020) -
Big data analytics for preventive medicine
por: Razzak, Muhammad Imran, et al.
Publicado: (2019) -
Improving healthcare outcomes using multimedia big data analytics
por: Razzak, Imran, et al.
Publicado: (2022) -
Towards Explainability in Using Deep Learning for the Detection of Anorexia in Social Media
por: Amini, Hessam, et al.
Publicado: (2020) -
A Hybrid Feature Selection and Ensemble Approach to Identify Depressed Users in Online Social Media
por: Liu, Jingfang, et al.
Publicado: (2022)