Cargando…

Biomarker selection and a prospective metabolite-based machine learning diagnostic for lyme disease

We provide a pipeline for data preprocessing, biomarker selection, and classification of liquid chromatography–mass spectrometry (LCMS) serum samples to generate a prospective diagnostic test for Lyme disease. We utilize tools of machine learning (ML), e.g., sparse support vector machines (SSVM), it...

Descripción completa

Detalles Bibliográficos
Autores principales: Kehoe, Eric R., Fitzgerald, Bryna L., Graham, Barbara, Islam, M. Nurul, Sharma, Kartikay, Wormser, Gary P., Belisle, John T., Kirby, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795431/
https://www.ncbi.nlm.nih.gov/pubmed/35087163
http://dx.doi.org/10.1038/s41598-022-05451-0
Descripción
Sumario:We provide a pipeline for data preprocessing, biomarker selection, and classification of liquid chromatography–mass spectrometry (LCMS) serum samples to generate a prospective diagnostic test for Lyme disease. We utilize tools of machine learning (ML), e.g., sparse support vector machines (SSVM), iterative feature removal (IFR), and k-fold feature ranking to select several biomarkers and build a discriminant model for Lyme disease. We report a 98.13% test balanced success rate (BSR) of our model based on a sequestered test set of LCMS serum samples. The methodology employed is general and can be readily adapted to other LCMS, or metabolomics, data sets.