Cargando…
Biomarker selection and a prospective metabolite-based machine learning diagnostic for lyme disease
We provide a pipeline for data preprocessing, biomarker selection, and classification of liquid chromatography–mass spectrometry (LCMS) serum samples to generate a prospective diagnostic test for Lyme disease. We utilize tools of machine learning (ML), e.g., sparse support vector machines (SSVM), it...
Autores principales: | Kehoe, Eric R., Fitzgerald, Bryna L., Graham, Barbara, Islam, M. Nurul, Sharma, Kartikay, Wormser, Gary P., Belisle, John T., Kirby, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795431/ https://www.ncbi.nlm.nih.gov/pubmed/35087163 http://dx.doi.org/10.1038/s41598-022-05451-0 |
Ejemplares similares
-
Identification of Urine Metabolites as Biomarkers of Early Lyme Disease
por: Pegalajar-Jurado, Adoracion, et al.
Publicado: (2018) -
Elucidation of a Human Urine Metabolite as a Seryl-Leucine
Glycopeptide and as a Biomarker of Effective Anti-Tuberculosis Therapy
por: Fitzgerald, Bryna L., et al.
Publicado: (2018) -
Correction to “Elucidation of a Novel Human
Urine Metabolite as a Seryl-Leucine Glycopeptide and as a Biomarker
of Effective Anti-Tuberculosis Therapy”
por: Fitzgerald, Bryna L., et al.
Publicado: (2019) -
Using machine learning to determine the time of exposure to infection by a respiratory pathogen
por: Sharma, Kartikay, et al.
Publicado: (2023) -
Autoantibodies in post-treatment Lyme disease syndrome
por: Alaedini, Armin, et al.
Publicado: (2022)