Cargando…
Histopathological whole slide image dataset for classification of treatment effectiveness to ovarian cancer
Ovarian cancer is the leading cause of gynecologic cancer death among women. Regardless of the development made in the past two decades in the surgery and chemotherapy of ovarian cancer, most of the advanced-stage patients are with recurrent cancer and die. The conventional treatment for ovarian can...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795433/ https://www.ncbi.nlm.nih.gov/pubmed/35087101 http://dx.doi.org/10.1038/s41597-022-01127-6 |
Sumario: | Ovarian cancer is the leading cause of gynecologic cancer death among women. Regardless of the development made in the past two decades in the surgery and chemotherapy of ovarian cancer, most of the advanced-stage patients are with recurrent cancer and die. The conventional treatment for ovarian cancer is to remove cancerous tissues using surgery followed by chemotherapy, however, patients with such treatment remain at great risk for tumor recurrence and progressive resistance. Nowadays, new treatment with molecular-targeted agents have become accessible. Bevacizumab as a monotherapy in combination with chemotherapy has been recently approved by FDA for the treatment of epithelial ovarian cancer (EOC). Prediction of therapeutic effects and individualization of therapeutic strategies are critical, but to the authors’ best knowledge, there are no effective biomarkers that can be used to predict patient response to bevacizumab treatment for EOC and peritoneal serous papillary carcinoma (PSPC). This dataset helps researchers to explore and develop methods to predict the therapeutic effect of patients with EOC and PSPC to bevacizumab. |
---|