Cargando…
The time complexity of self-assembly
Time efficiency of self-assembly is crucial for many biological processes. Moreover, with the advances of nanotechnology, time efficiency in artificial self-assembly becomes ever more important. While structural determinants and the final assembly yield are increasingly well understood, kinetic aspe...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795547/ https://www.ncbi.nlm.nih.gov/pubmed/35042812 http://dx.doi.org/10.1073/pnas.2116373119 |
_version_ | 1784641090853273600 |
---|---|
author | Gartner, Florian M. Graf, Isabella R. Frey, Erwin |
author_facet | Gartner, Florian M. Graf, Isabella R. Frey, Erwin |
author_sort | Gartner, Florian M. |
collection | PubMed |
description | Time efficiency of self-assembly is crucial for many biological processes. Moreover, with the advances of nanotechnology, time efficiency in artificial self-assembly becomes ever more important. While structural determinants and the final assembly yield are increasingly well understood, kinetic aspects concerning the time efficiency, however, remain much more elusive. In computer science, the concept of time complexity is used to characterize the efficiency of an algorithm and describes how the algorithm’s runtime depends on the size of the input data. Here we characterize the time complexity of nonequilibrium self-assembly processes by exploring how the time required to realize a certain, substantial yield of a given target structure scales with its size. We identify distinct classes of assembly scenarios, i.e., “algorithms” to accomplish this task, and show that they exhibit drastically different degrees of complexity. Our analysis enables us to identify optimal control strategies for nonequilibrium self-assembly processes. Furthermore, we suggest an efficient irreversible scheme for the artificial self-assembly of nanostructures, which complements the state-of-the-art approach using reversible binding reactions and requires no fine-tuning of binding energies. |
format | Online Article Text |
id | pubmed-8795547 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-87955472022-02-03 The time complexity of self-assembly Gartner, Florian M. Graf, Isabella R. Frey, Erwin Proc Natl Acad Sci U S A Physical Sciences Time efficiency of self-assembly is crucial for many biological processes. Moreover, with the advances of nanotechnology, time efficiency in artificial self-assembly becomes ever more important. While structural determinants and the final assembly yield are increasingly well understood, kinetic aspects concerning the time efficiency, however, remain much more elusive. In computer science, the concept of time complexity is used to characterize the efficiency of an algorithm and describes how the algorithm’s runtime depends on the size of the input data. Here we characterize the time complexity of nonequilibrium self-assembly processes by exploring how the time required to realize a certain, substantial yield of a given target structure scales with its size. We identify distinct classes of assembly scenarios, i.e., “algorithms” to accomplish this task, and show that they exhibit drastically different degrees of complexity. Our analysis enables us to identify optimal control strategies for nonequilibrium self-assembly processes. Furthermore, we suggest an efficient irreversible scheme for the artificial self-assembly of nanostructures, which complements the state-of-the-art approach using reversible binding reactions and requires no fine-tuning of binding energies. National Academy of Sciences 2022-01-18 2022-01-25 /pmc/articles/PMC8795547/ /pubmed/35042812 http://dx.doi.org/10.1073/pnas.2116373119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Physical Sciences Gartner, Florian M. Graf, Isabella R. Frey, Erwin The time complexity of self-assembly |
title | The time complexity of self-assembly |
title_full | The time complexity of self-assembly |
title_fullStr | The time complexity of self-assembly |
title_full_unstemmed | The time complexity of self-assembly |
title_short | The time complexity of self-assembly |
title_sort | time complexity of self-assembly |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795547/ https://www.ncbi.nlm.nih.gov/pubmed/35042812 http://dx.doi.org/10.1073/pnas.2116373119 |
work_keys_str_mv | AT gartnerflorianm thetimecomplexityofselfassembly AT grafisabellar thetimecomplexityofselfassembly AT freyerwin thetimecomplexityofselfassembly AT gartnerflorianm timecomplexityofselfassembly AT grafisabellar timecomplexityofselfassembly AT freyerwin timecomplexityofselfassembly |