Cargando…

Cross-Domain Feature Similarity Guided Blind Image Quality Assessment

This work proposes an end-to-end cross-domain feature similarity guided deep neural network for perceptual quality assessment. Our proposed blind image quality assessment approach is based on the observation that features similarity across different domains (e.g., Semantic Recognition and Quality Pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Chenxi, Ye, Long, Zhang, Qin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795631/
https://www.ncbi.nlm.nih.gov/pubmed/35095391
http://dx.doi.org/10.3389/fnins.2021.767977
Descripción
Sumario:This work proposes an end-to-end cross-domain feature similarity guided deep neural network for perceptual quality assessment. Our proposed blind image quality assessment approach is based on the observation that features similarity across different domains (e.g., Semantic Recognition and Quality Prediction) is well correlated with the subjective quality annotations. Such phenomenon is validated by thoroughly analyze the intrinsic interaction between an object recognition task and a quality prediction task in terms of characteristics of the human visual system. Based on the observation, we designed an explicable and self-contained cross-domain feature similarity guided BIQA framework. Experimental results on both authentical and synthetic image quality databases demonstrate the superiority of our approach, as compared to the state-of-the-art models.