Cargando…
Systematic Modeling, Prediction, and Comparison of Domain–Peptide Affinities: Does it Work Effectively With the Peptide QSAR Methodology?
The protein–protein association in cellular signaling networks (CSNs) often acts as weak, transient, and reversible domain–peptide interaction (DPI), in which a flexible peptide segment on the surface of one protein is recognized and bound by a rigid peptide-recognition domain from another. Reliable...
Autores principales: | Liu, Qian, Lin, Jing, Wen, Li, Wang, Shaozhou, Zhou, Peng, Mei, Li, Shang, Shuyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795790/ https://www.ncbi.nlm.nih.gov/pubmed/35096016 http://dx.doi.org/10.3389/fgene.2021.800857 |
Ejemplares similares
-
Methodology of aiQSAR: a group-specific approach to QSAR modelling
por: Vukovic, Kristijan, et al.
Publicado: (2019) -
Anticancer Peptide Prediction via Multi-Kernel CNN and Attention Model
por: Wu, Xiujin, et al.
Publicado: (2022) -
ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation
por: Chen, Xian-gan, et al.
Publicado: (2021) -
Entropy of stapled peptide inhibitors in free state is the major contributor to the improvement of binding affinity with the GK domain
por: Unarta, Ilona Christy, et al.
Publicado: (2021) -
Modeling the QSAR of ACE-Inhibitory Peptides with ANN and Its Applied Illustration
por: He, Ronghai, et al.
Publicado: (2012)