Cargando…
Partial least squares regression and principal component analysis: similarity and differences between two popular variable reduction approaches
In many statistical applications, composite variables are constructed to reduce the number of variables and improve the performances of statistical analyses of these variables, especially when some of the variables are highly correlated. Principal component analysis (PCA) and factor analysis (FA) ar...
Autores principales: | Liu, Chenyu, Zhang, Xinlian, Nguyen, Tanya T, Liu, Jinyuan, Wu, Tsungchin, Lee, Ellen, Tu, Xin M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796256/ https://www.ncbi.nlm.nih.gov/pubmed/35146334 http://dx.doi.org/10.1136/gpsych-2021-100662 |
Ejemplares similares
-
Deciphering the ‘gut–brain axis’ through microbiome diversity
por: Liu, Jinyuan, et al.
Publicado: (2023) -
Sample sizes based on three popular indices of risks
por: Wang, Hongyue, et al.
Publicado: (2018) -
Homoscedasticity: an overlooked critical assumption for linear regression
por: Yang, Kun, et al.
Publicado: (2019) -
Post-hoc power analysis: a conceptually valid approach for power based on observed study data
por: Quach, Natalie E, et al.
Publicado: (2022) -
Kappa coefficient: a popular measure of rater agreement
por: TANG, Wan, et al.
Publicado: (2015)