Cargando…

Limits and potential of combined folding and docking

MOTIVATION: In the last decade, de novo protein structure prediction accuracy for individual proteins has improved significantly by utilising deep learning (DL) methods for harvesting the co-evolution information from large multiple sequence alignments (MSAs). The same approach can, in principle, al...

Descripción completa

Detalles Bibliográficos
Autores principales: Pozzati, Gabriele, Zhu, Wensi, Bassot, Claudio, Lamb, John, Kundrotas, Petras, Elofsson, Arne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796369/
https://www.ncbi.nlm.nih.gov/pubmed/34788800
http://dx.doi.org/10.1093/bioinformatics/btab760
Descripción
Sumario:MOTIVATION: In the last decade, de novo protein structure prediction accuracy for individual proteins has improved significantly by utilising deep learning (DL) methods for harvesting the co-evolution information from large multiple sequence alignments (MSAs). The same approach can, in principle, also be used to extract information about evolutionary-based contacts across protein–protein interfaces. However, most earlier studies have not used the latest DL methods for inter-chain contact distance prediction. This article introduces a fold-and-dock method based on predicted residue-residue distances with trRosetta. RESULTS: The method can simultaneously predict the tertiary and quaternary structure of a protein pair, even when the structures of the monomers are not known. The straightforward application of this method to a standard dataset for protein–protein docking yielded limited success. However, using alternative methods for generating MSAs allowed us to dock accurately significantly more proteins. We also introduced a novel scoring function, PconsDock, that accurately separates 98% of correctly and incorrectly folded and docked proteins. The average performance of the method is comparable to the use of traditional, template-based or ab initio shape-complementarity-only docking methods. Moreover, the results of conventional and fold-and-dock approaches are complementary, and thus a combined docking pipeline could increase overall docking success significantly. This methodology contributed to the best model for one of the CASP14 oligomeric targets, H1065. AVAILABILITY AND IMPLEMENTATION: All scripts for predictions and analysis are available from https://github.com/ElofssonLab/bioinfo-toolbox/ and https://gitlab.com/ElofssonLab/benchmark5/. All models joined alignments, and evaluation results are available from the following figshare repository https://doi.org/10.6084/m9.figshare.14654886.v2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.