Cargando…
nextNEOpi: a comprehensive pipeline for computational neoantigen prediction
SUMMARY: Somatic mutations and gene fusions can produce immunogenic neoantigens mediating anticancer immune responses. However, their computational prediction from sequencing data requires complex computational workflows to identify tumor-specific aberrations, derive the resulting peptides, infer pa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796378/ https://www.ncbi.nlm.nih.gov/pubmed/34788790 http://dx.doi.org/10.1093/bioinformatics/btab759 |
Sumario: | SUMMARY: Somatic mutations and gene fusions can produce immunogenic neoantigens mediating anticancer immune responses. However, their computational prediction from sequencing data requires complex computational workflows to identify tumor-specific aberrations, derive the resulting peptides, infer patients’ Human Leukocyte Antigen types and predict neoepitopes binding to them, together with a set of features underlying their immunogenicity. Here, we present nextNEOpi (nextflow NEOantigen prediction pipeline) a comprehensive and fully automated bioinformatic pipeline to predict tumor neoantigens from raw DNA and RNA sequencing data. In addition, nextNEOpi quantifies neoepitope- and patient-specific features associated with tumor immunogenicity and response to immunotherapy. AVAILABILITY AND IMPLEMENTATION: nextNEOpi source code and documentation are available at https://github.com/icbi-lab/nextNEOpi CONTACT: dietmar.rieder@i-med.ac.at or francesca.finotello@uibk.ac.at SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|