Cargando…
What’s new in artificially intelligent joint surgery in China? The minutes of the 2021 IEEE ICRA and literature review
OBJECTIVE: To outline the main results of the 2021 International Conference on Robotics and Automation (ICRA 2021) of the Institute of Electrical and Electronics Engineers (IEEE) and review the advances in artificially intelligent joint surgery in China. METHODS: The keynote speeches of the 2021 ICR...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796390/ https://www.ncbi.nlm.nih.gov/pubmed/35236509 http://dx.doi.org/10.1186/s42836-021-00109-0 |
Sumario: | OBJECTIVE: To outline the main results of the 2021 International Conference on Robotics and Automation (ICRA 2021) of the Institute of Electrical and Electronics Engineers (IEEE) and review the advances in artificially intelligent joint surgery in China. METHODS: The keynote speeches of the 2021 ICRA were summarized in detail, and publications indexed by five core electronic databases (PubMed, Cochrane, Medline, Embase and CNKI) were systematically surveyed (cutoff date: July 30, 2021) in terms of the main topics of the conference. Publications directly related to artificially intelligent joint surgery in China were identified by using the search strategies of (robotic AND arthroplasty OR replacement), (navigation AND arthroplasty OR replacement), (artificial intelligent AND arthroplasty OR replacement), and (mixed reality AND arthroplasty OR replacement) and systemically reviewed. RESULTS: While robot-assisted arthroplasty in China is mainly performed using robots made in other countries (e.g., Mako from Stryker, USA), China’s domestic R&D of robots and clinical studies of robotic joint surgery have made some achievements. Although reports on the safety, effectiveness and clinical efficacy of China’s domestic robot-assisted joint surgery were presented at conferences, they have rarely been published in journals. Existing data indicate that, after the learning curve is overcome, robot-assisted hip and knee replacement surgery can fully achieve the established goals of precision and individualization and can significantly improve the accuracy of prosthesis placement angle and the recovery of the mechanical axis as compared with conventional surgery. The downside is that the low level of intelligentization and individualization means that existing designs are not conducive to personalization during surgery, resulting in low cost-effectiveness. CONCLUSION: The safety and efficacy of domestic robot-assisted arthroplasty in China are well documented, and its accuracy and short-term clinical efficacy have been reported. However, the long-term clinical efficacy and the cost-effectiveness of large-scale clinical application of this technique warrants further study. The inadequacies of robot-assisted surgery should be remedied through the deep integration of medicine, engineering and the network. |
---|