Cargando…
A deterministic approach for protecting privacy in sensitive personal data
BACKGROUND: Data privacy is one of the biggest challenges for any organisation which processes personal data, especially in the area of medical research where data include sensitive information about patients and study participants. Sharing of data is therefore problematic, which is at odds with the...
Autores principales: | Avraam, Demetris, Jones, Elinor, Burton, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796499/ https://www.ncbi.nlm.nih.gov/pubmed/35090447 http://dx.doi.org/10.1186/s12911-022-01754-4 |
Ejemplares similares
-
Privacy preserving data visualizations
por: Avraam, Demetris, et al.
Publicado: (2021) -
Privacy protected text analysis in DataSHIELD
por: Wilson, Rebecca, et al.
Publicado: (2017) -
Privacy protected graphical functionality in DataSHIELD
por: Avraam, Demetris, et al.
Publicado: (2017) -
Orchestrating privacy-protected big data analyses of data from different resources with R and DataSHIELD
por: Marcon, Yannick, et al.
Publicado: (2021) -
dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD
por: Banerjee, Soumya, et al.
Publicado: (2022)