Cargando…

Photobiomodulation of human gingival fibroblasts with diode laser - A systematic review

Low-level laser therapy (LLLT) is being extensively studied in the field of periodontics as a noninvasive technique to achieve better results after nonsurgical and surgical therapy. However, there is a lack of definitive guidelines for the use of LLLT to promote gingival and periodontal wound healin...

Descripción completa

Detalles Bibliográficos
Autores principales: Bakshi, Purva Vijay, Setty, Swati Badarinarayan, Kulkarni, Mihir Raghavendra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796789/
https://www.ncbi.nlm.nih.gov/pubmed/35136310
http://dx.doi.org/10.4103/jisp.jisp_90_21
Descripción
Sumario:Low-level laser therapy (LLLT) is being extensively studied in the field of periodontics as a noninvasive technique to achieve better results after nonsurgical and surgical therapy. However, there is a lack of definitive guidelines for the use of LLLT to promote gingival and periodontal wound healing. The primary objective of this systematic review was to critically analyze the studies evaluating the effect of low-level diode laser on human gingival fibroblasts in vitro and to develop wavelength-specific guidelines for photobiomodulation of human gingival fibroblasts. A thorough electronic and manual search was conducted for relevant articles published until December 2019. Nine studies were included in the review after the initial screening of 1334 articles. Our data analysis revealed that LLLT with diode laser stimulates human gingival fibroblasts as there was the increase in cell viability, proliferation, migration, and protein synthesis in irradiated cells. The diode lasers in the 600–700 nm spectrum were effective in the 10 mW to 30 mW power range. Lasers in the 700–800 nm range were effective in the 25–50 mW power range and diode lasers in the 800–900 nm range were effective at a power setting of 10 mW. It was possible to ascertain a suitable power setting for a particular wavelength spectrum, but no other parameters could be defined due to a lack of reporting of details. Hence, the authors have developed guidelines for comprehensive reporting of in–vitro studies to facilitate future research and overcome existing lacunae in knowledge.