Cargando…
Investigating population dynamics from parentage analysis in the highly endangered fan mussel Pinna nobilis
Understanding dispersal patterns is a major focus for conservation biology as it influences local survival and resilience in case of local disturbance, particularly for sessile species. Dispersal can be assessed through parentage analyses by estimating family structure and self‐recruitment. This stu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796933/ https://www.ncbi.nlm.nih.gov/pubmed/35127019 http://dx.doi.org/10.1002/ece3.8482 |
Sumario: | Understanding dispersal patterns is a major focus for conservation biology as it influences local survival and resilience in case of local disturbance, particularly for sessile species. Dispersal can be assessed through parentage analyses by estimating family structure and self‐recruitment. This study documents the family structure of a pelagic spawner, Pinna nobilis, which is facing a major crisis that threatens its survival as most of its populations have been decimated by a parasite, Haplosporidium pinnae. In this context, we focused on a single population (Peyrefite, Banyuls‐sur‐mer, France) where 640 individuals were sampled in 2011, 2015, and 2018 and genotyped for 22 microsatellite markers. Genetic diversity was high and homogeneous among years, with mean allele numbers ranging between 13.6 and 14.8 and observed heterozygosities (H (o)) between 0.7121 and 0.7331. Low, but significant, genetic differentiations were found between 2011–2015 and 2015–2018. A parentage analysis described 11 clusters, including one prevailing, and revealed that 46.9% of individuals were involved in half‐sib relationships, even between years, suggesting that source populations were recurrent year after year. There were few individuals resampled between years (30 in 2015 and 14 in 2018), indicating a rapid turnover. Considering the large number of half‐sib relationships but the low number of relations per individual, we conclude that P. nobilis exhibit homogeneous reproductive success. Self‐recruitment was not detected, making this population highly vulnerable as replenishment only relies on connectivity from neighboring populations. In the context of the pandemic caused by H. pinnae, these results will have to be considered when choosing a location to reintroduce individuals in potential future rescue plans. |
---|