Cargando…
Nanospike electrodes and charge nanoribbons: A new design for nanoscale thin-film transistors
To scale down thin-film transistor (TFT) channel lengths for accessing higher levels of speed and performance, a redesign of the basic device structure is necessary. With nanospike-shaped electrodes, field-emission effects can be used to assist charge injection from the electrodes in sub–200-nm chan...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8797182/ https://www.ncbi.nlm.nih.gov/pubmed/35089782 http://dx.doi.org/10.1126/sciadv.abm1154 |
Sumario: | To scale down thin-film transistor (TFT) channel lengths for accessing higher levels of speed and performance, a redesign of the basic device structure is necessary. With nanospike-shaped electrodes, field-emission effects can be used to assist charge injection from the electrodes in sub–200-nm channel length amorphous oxide and organic TFTs. These designs result in the formation of charge nanoribbons at low gate biases that greatly improve subthreshold and turn-off characteristics. A design paradigm in which the gate electric field can be less than the source-drain field is proposed and demonstrated. By combining small channel lengths and thick gate dielectrics, this approach is also shown to be a promising solution for boosting TFT performance through charge focusing and charge nanoribbon formation in flexible/printed electronics applications. |
---|