Cargando…
Regulation of gliotoxin biosynthesis and protection in Aspergillus species
Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is th...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8797188/ https://www.ncbi.nlm.nih.gov/pubmed/35041649 http://dx.doi.org/10.1371/journal.pgen.1009965 |
_version_ | 1784641490403721216 |
---|---|
author | de Castro, Patrícia Alves Colabardini, Ana Cristina Moraes, Maísa Horta, Maria Augusta Crivelente Knowles, Sonja L. Raja, Huzefa A. Oberlies, Nicholas H. Koyama, Yasuji Ogawa, Masahiro Gomi, Katsuya Steenwyk, Jacob L. Rokas, Antonis Gonçales, Relber A. Duarte-Oliveira, Cláudio Carvalho, Agostinho Ries, Laure N. A. Goldman, Gustavo H. |
author_facet | de Castro, Patrícia Alves Colabardini, Ana Cristina Moraes, Maísa Horta, Maria Augusta Crivelente Knowles, Sonja L. Raja, Huzefa A. Oberlies, Nicholas H. Koyama, Yasuji Ogawa, Masahiro Gomi, Katsuya Steenwyk, Jacob L. Rokas, Antonis Gonçales, Relber A. Duarte-Oliveira, Cláudio Carvalho, Agostinho Ries, Laure N. A. Goldman, Gustavo H. |
author_sort | de Castro, Patrícia Alves |
collection | PubMed |
description | Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species. |
format | Online Article Text |
id | pubmed-8797188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-87971882022-01-29 Regulation of gliotoxin biosynthesis and protection in Aspergillus species de Castro, Patrícia Alves Colabardini, Ana Cristina Moraes, Maísa Horta, Maria Augusta Crivelente Knowles, Sonja L. Raja, Huzefa A. Oberlies, Nicholas H. Koyama, Yasuji Ogawa, Masahiro Gomi, Katsuya Steenwyk, Jacob L. Rokas, Antonis Gonçales, Relber A. Duarte-Oliveira, Cláudio Carvalho, Agostinho Ries, Laure N. A. Goldman, Gustavo H. PLoS Genet Research Article Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species. Public Library of Science 2022-01-18 /pmc/articles/PMC8797188/ /pubmed/35041649 http://dx.doi.org/10.1371/journal.pgen.1009965 Text en © 2022 de Castro et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article de Castro, Patrícia Alves Colabardini, Ana Cristina Moraes, Maísa Horta, Maria Augusta Crivelente Knowles, Sonja L. Raja, Huzefa A. Oberlies, Nicholas H. Koyama, Yasuji Ogawa, Masahiro Gomi, Katsuya Steenwyk, Jacob L. Rokas, Antonis Gonçales, Relber A. Duarte-Oliveira, Cláudio Carvalho, Agostinho Ries, Laure N. A. Goldman, Gustavo H. Regulation of gliotoxin biosynthesis and protection in Aspergillus species |
title | Regulation of gliotoxin biosynthesis and protection in Aspergillus species |
title_full | Regulation of gliotoxin biosynthesis and protection in Aspergillus species |
title_fullStr | Regulation of gliotoxin biosynthesis and protection in Aspergillus species |
title_full_unstemmed | Regulation of gliotoxin biosynthesis and protection in Aspergillus species |
title_short | Regulation of gliotoxin biosynthesis and protection in Aspergillus species |
title_sort | regulation of gliotoxin biosynthesis and protection in aspergillus species |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8797188/ https://www.ncbi.nlm.nih.gov/pubmed/35041649 http://dx.doi.org/10.1371/journal.pgen.1009965 |
work_keys_str_mv | AT decastropatriciaalves regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT colabardinianacristina regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT moraesmaisa regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT hortamariaaugustacrivelente regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT knowlessonjal regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT rajahuzefaa regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT oberliesnicholash regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT koyamayasuji regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT ogawamasahiro regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT gomikatsuya regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT steenwykjacobl regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT rokasantonis regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT goncalesrelbera regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT duarteoliveiraclaudio regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT carvalhoagostinho regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT rieslaurena regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies AT goldmangustavoh regulationofgliotoxinbiosynthesisandprotectioninaspergillusspecies |