Cargando…
DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics
Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, a...
Autores principales: | O’Connor, Owen M., Alnahhas, Razan N., Lugagne, Jean-Baptiste, Dunlop, Mary J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8797229/ https://www.ncbi.nlm.nih.gov/pubmed/35041653 http://dx.doi.org/10.1371/journal.pcbi.1009797 |
Ejemplares similares
-
DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning
por: Lugagne, Jean-Baptiste, et al.
Publicado: (2020) -
DeLTa-Seq: direct-lysate targeted RNA-Seq from crude tissue lysate
por: Kashima, Makoto, et al.
Publicado: (2022) -
LipidFinder 2.0: advanced informatics pipeline for lipidomics discovery applications
por: Alvarez-Jarreta, Jorge, et al.
Publicado: (2020) -
Longitudinal Single‐Cell Imaging of Engineered Strains with Stimulated Raman Scattering to Characterize Heterogeneity in Fatty Acid Production
por: Tague, Nathan, et al.
Publicado: (2023) -
Long-range temporal coordination of gene expression in synthetic microbial consortia
por: Kim, Jae Kyoung, et al.
Publicado: (2019)