Cargando…
Evaluation of critical data processing steps for reliable prediction of gene co-expression from large collections of RNA-seq data
MOTIVATION: Gene co-expression analysis is an attractive tool for leveraging enormous amounts of public RNA-seq datasets for the prediction of gene functions and regulatory mechanisms. However, the optimal data processing steps for the accurate prediction of gene co-expression from such large datase...
Autor principal: | Vandenbon, Alexis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8797241/ https://www.ncbi.nlm.nih.gov/pubmed/35089979 http://dx.doi.org/10.1371/journal.pone.0263344 |
Ejemplares similares
-
A universal tool for predicting differentially active features in single-cell and spatial genomics data
por: Vandenbon, Alexis, et al.
Publicado: (2023) -
Towards reliable isoform quantification using RNA-SEQ data
por: Howard, Brian E, et al.
Publicado: (2010) -
A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data
por: Vandenbon, Alexis, et al.
Publicado: (2020) -
Making the most of RNA-seq: Pre-processing sequencing data with Opossum for reliable SNP variant detection
por: Oikkonen, Laura, et al.
Publicado: (2017) -
A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
por: Lun, Aaron T.L., et al.
Publicado: (2016)