Cargando…
Positional SHAP (PoSHAP) for Interpretation of machine learning models trained from biological sequences
Machine learning with multi-layered artificial neural networks, also known as “deep learning,” is effective for making biological predictions. However, model interpretation is challenging, especially for sequential input data used with recurrent neural network architectures. Here, we introduce a fra...
Autores principales: | Dickinson, Quinn, Meyer, Jesse G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8797255/ https://www.ncbi.nlm.nih.gov/pubmed/35089914 http://dx.doi.org/10.1371/journal.pcbi.1009736 |
Ejemplares similares
-
GPUTreeShap: massively parallel exact calculation of SHAP scores for tree ensembles
por: Mitchell, Rory, et al.
Publicado: (2022) -
The importance of interpreting machine learning models for blood glucose prediction in diabetes: an analysis using SHAP
por: Prendin, Francesco, et al.
Publicado: (2023) -
Explainable AI for Retinoblastoma Diagnosis: Interpreting Deep Learning Models with LIME and SHAP
por: Aldughayfiq, Bader, et al.
Publicado: (2023) -
How to understand high global food price? Using SHAP to interpret machine learning algorithm
por: Han, Xiao, et al.
Publicado: (2023) -
XGBoost-SHAP-based interpretable diagnostic framework for alzheimer’s disease
por: Yi, Fuliang, et al.
Publicado: (2023)