Cargando…
Mutation of PD-1 immune receptor tyrosine-based switch motif (ITSM) enhances the antitumor activity of cytotoxic T cells
BACKGROUND: Programmed cell death protein 1 (PD-1), as an immune checkpoint cell membrane receptor, negatively regulates T cell activation via its immune receptor, the tyrosine-based switch motif (ITSM). The purpose of this research was to evaluate the antitumor activity T cells with the ITSM mutati...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8798335/ https://www.ncbi.nlm.nih.gov/pubmed/35117290 http://dx.doi.org/10.21037/tcr-20-2118 |
Sumario: | BACKGROUND: Programmed cell death protein 1 (PD-1), as an immune checkpoint cell membrane receptor, negatively regulates T cell activation via its immune receptor, the tyrosine-based switch motif (ITSM). The purpose of this research was to evaluate the antitumor activity T cells with the ITSM mutation of PD-1 on non-small cell lung cancer (NSCLC) in vitro and in vivo. METHODS: In this study, the tyrosine of ITSM in cytotoxic T cells was mutated using the adenine base editor (ABE)-xCas9 system to evaluate its effect on the antitumor activity of T cells against NSCLC. RESULTS: Results showed that the PD-1-deficient T cells enhanced the death of the cocultured NSCLC cells compared with the normal T cells and saline solution. PD-1-deficient T cells also changed the interleukin 2(IL-2), interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion of T cells compared with those of the normal T cells. The effectiveness of ITSM mutation in enhancing the antitumor activity of PD-1-deficient T cells was verified in vivo by using a mouse xenograft model. The xenografted mice treated with PD-1-deficient T cells demonstrated repressed tumor growth of the NSCLC cells compared with those treated with normal T cells and saline solution. CONCLUSIONS: The mutation of ITSM in cytotoxic T cell via the ABE-xCas9 system can significantly enhance the antitumor activity of T cells. |
---|