Cargando…
A network pharmacology approach for investigating the multi-target mechanisms of Huangqi in the treatment of colorectal cancer
BACKGROUND: Colorectal cancer (CRC) is the third most prevalent cancer globally. In the treatment of CRC, surgical resection is commonly adopted, and neoadjuvant chemotherapy or immunotherapy is mainly administered for patients with advanced disease. However, despite the developments in the field of...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8798599/ https://www.ncbi.nlm.nih.gov/pubmed/35116401 http://dx.doi.org/10.21037/tcr-20-2596 |
_version_ | 1784641846922706944 |
---|---|
author | Chu, Xiao-Dong Zhang, Yi-Ran Lin, Zheng-Bin Zhao, Zhan Huangfu, Shu-Chen Qiu, Sheng-Hui Guo, Yan-Guan Ding, Hui Huang, Ting Chu, Xiao-Li Pan, Jing-Hua Pan, Yun-Long |
author_facet | Chu, Xiao-Dong Zhang, Yi-Ran Lin, Zheng-Bin Zhao, Zhan Huangfu, Shu-Chen Qiu, Sheng-Hui Guo, Yan-Guan Ding, Hui Huang, Ting Chu, Xiao-Li Pan, Jing-Hua Pan, Yun-Long |
author_sort | Chu, Xiao-Dong |
collection | PubMed |
description | BACKGROUND: Colorectal cancer (CRC) is the third most prevalent cancer globally. In the treatment of CRC, surgical resection is commonly adopted, and neoadjuvant chemotherapy or immunotherapy is mainly administered for patients with advanced disease. However, despite the developments in the field of cancer treatment, the mortality rate of CRC has remained high. Therefore, novel treatments for CRC need to be explored. Astragalus membranaceus, commonly known in China as Huangqi (HQ), a traditional Chinese medicine, has been reported to be a potential antitumorigenic agent. This study aimed to investigate the mechanisms of action of HQ. METHODS: Active ingredients and putative targets of HQ were obtained through a comprehensive search of the Traditional Chinese Medicine Systems Pharmacology database. CRC-related targets were retrieved from the GeneCards database and then overlapping targets were acquired. After visualization of the compound-disease network and protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the overlapping genes were performed. Additionally, HCT116 cells were treated with the active components of HQ at a 20-µM concentration. Cell Counting Kit-8 was used to detect cell activity, and real-time quantitative polymerase chain reaction was carried out to detect the expression of genes downstream of the interleukin (IL)-17 signaling pathway. RESULTS: A PPI network comprising 177 nodes and 318 edges was obtained. The GO analysis of the overlapping genes showed enrichment in response to lipopolysaccharide and oxidative process. For the KEGG analysis, the AGE-RAGE signaling pathway and inflammation-related pathways, such as the IL-17 and tumor necrosis factor (TNF) signaling pathways, were enriched. The in vitro experiments showed that HQ promoted the apoptosis of CRC cells by inhibiting the expression of the CCL2, CXCL8, CXCL10, and PTGS2 genes. CONCLUSIONS: This study systematically revealed the multitarget mechanism of HQ in CRC through a network pharmacology approach. We verified that HQ promotes CRC cell death via the IL-17 signaling pathway. This finding provides indications for further mechanistic studies and the development of HQ as a potential treatment for CRC patients. |
format | Online Article Text |
id | pubmed-8798599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | AME Publishing Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-87985992022-02-02 A network pharmacology approach for investigating the multi-target mechanisms of Huangqi in the treatment of colorectal cancer Chu, Xiao-Dong Zhang, Yi-Ran Lin, Zheng-Bin Zhao, Zhan Huangfu, Shu-Chen Qiu, Sheng-Hui Guo, Yan-Guan Ding, Hui Huang, Ting Chu, Xiao-Li Pan, Jing-Hua Pan, Yun-Long Transl Cancer Res Original Article BACKGROUND: Colorectal cancer (CRC) is the third most prevalent cancer globally. In the treatment of CRC, surgical resection is commonly adopted, and neoadjuvant chemotherapy or immunotherapy is mainly administered for patients with advanced disease. However, despite the developments in the field of cancer treatment, the mortality rate of CRC has remained high. Therefore, novel treatments for CRC need to be explored. Astragalus membranaceus, commonly known in China as Huangqi (HQ), a traditional Chinese medicine, has been reported to be a potential antitumorigenic agent. This study aimed to investigate the mechanisms of action of HQ. METHODS: Active ingredients and putative targets of HQ were obtained through a comprehensive search of the Traditional Chinese Medicine Systems Pharmacology database. CRC-related targets were retrieved from the GeneCards database and then overlapping targets were acquired. After visualization of the compound-disease network and protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the overlapping genes were performed. Additionally, HCT116 cells were treated with the active components of HQ at a 20-µM concentration. Cell Counting Kit-8 was used to detect cell activity, and real-time quantitative polymerase chain reaction was carried out to detect the expression of genes downstream of the interleukin (IL)-17 signaling pathway. RESULTS: A PPI network comprising 177 nodes and 318 edges was obtained. The GO analysis of the overlapping genes showed enrichment in response to lipopolysaccharide and oxidative process. For the KEGG analysis, the AGE-RAGE signaling pathway and inflammation-related pathways, such as the IL-17 and tumor necrosis factor (TNF) signaling pathways, were enriched. The in vitro experiments showed that HQ promoted the apoptosis of CRC cells by inhibiting the expression of the CCL2, CXCL8, CXCL10, and PTGS2 genes. CONCLUSIONS: This study systematically revealed the multitarget mechanism of HQ in CRC through a network pharmacology approach. We verified that HQ promotes CRC cell death via the IL-17 signaling pathway. This finding provides indications for further mechanistic studies and the development of HQ as a potential treatment for CRC patients. AME Publishing Company 2021-02 /pmc/articles/PMC8798599/ /pubmed/35116401 http://dx.doi.org/10.21037/tcr-20-2596 Text en 2021 Translational Cancer Research. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/. |
spellingShingle | Original Article Chu, Xiao-Dong Zhang, Yi-Ran Lin, Zheng-Bin Zhao, Zhan Huangfu, Shu-Chen Qiu, Sheng-Hui Guo, Yan-Guan Ding, Hui Huang, Ting Chu, Xiao-Li Pan, Jing-Hua Pan, Yun-Long A network pharmacology approach for investigating the multi-target mechanisms of Huangqi in the treatment of colorectal cancer |
title | A network pharmacology approach for investigating the multi-target mechanisms of Huangqi in the treatment of colorectal cancer |
title_full | A network pharmacology approach for investigating the multi-target mechanisms of Huangqi in the treatment of colorectal cancer |
title_fullStr | A network pharmacology approach for investigating the multi-target mechanisms of Huangqi in the treatment of colorectal cancer |
title_full_unstemmed | A network pharmacology approach for investigating the multi-target mechanisms of Huangqi in the treatment of colorectal cancer |
title_short | A network pharmacology approach for investigating the multi-target mechanisms of Huangqi in the treatment of colorectal cancer |
title_sort | network pharmacology approach for investigating the multi-target mechanisms of huangqi in the treatment of colorectal cancer |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8798599/ https://www.ncbi.nlm.nih.gov/pubmed/35116401 http://dx.doi.org/10.21037/tcr-20-2596 |
work_keys_str_mv | AT chuxiaodong anetworkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT zhangyiran anetworkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT linzhengbin anetworkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT zhaozhan anetworkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT huangfushuchen anetworkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT qiushenghui anetworkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT guoyanguan anetworkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT dinghui anetworkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT huangting anetworkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT chuxiaoli anetworkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT panjinghua anetworkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT panyunlong anetworkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT chuxiaodong networkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT zhangyiran networkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT linzhengbin networkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT zhaozhan networkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT huangfushuchen networkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT qiushenghui networkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT guoyanguan networkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT dinghui networkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT huangting networkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT chuxiaoli networkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT panjinghua networkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer AT panyunlong networkpharmacologyapproachforinvestigatingthemultitargetmechanismsofhuangqiinthetreatmentofcolorectalcancer |