Cargando…

Atorvastatin inhibits pancreatic cancer cells proliferation and invasion likely by suppressing neurotrophin receptor signaling

BACKGROUND: Pancreatic cancer (PC) is aggressive and with poor clinical prognosis. However, mechanisms underlying the aggressiveness of PC remain unclear. Increasing evidence indicates that cholesterol, a major source of bio-energy, is required for the progression of human cancers including PC. Ther...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Shang, Chen, Qingqing, Xu, Yingying, Zhuang, Qianfeng, Ji, Shengjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8798715/
https://www.ncbi.nlm.nih.gov/pubmed/35117491
http://dx.doi.org/10.21037/tcr.2020.01.27
Descripción
Sumario:BACKGROUND: Pancreatic cancer (PC) is aggressive and with poor clinical prognosis. However, mechanisms underlying the aggressiveness of PC remain unclear. Increasing evidence indicates that cholesterol, a major source of bio-energy, is required for the progression of human cancers including PC. Therefore, this study aimed to investigate the anti-tumor effect of atorvastatin, a widely used lipid-lowering agent that blocks the production of cholesterol, on human PC. METHODS: We firstly assessed the impacts of atorvastatin on the proliferation, apoptosis, cell cycle distribution, migration and invasion of human PC cells PANC-1 and SW1990. Furthermore, we studied the effects of atorvastatin on neurotrophin receptor signaling, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and their downstream receptors tropomyosin receptor kinase (Trk) Trk A, Trk B and Trk C in human PC cells. RESULTS: Atorvastatin significantly inhibited the proliferation, migration and invasion, and induced G1-phase cell cycle arrest and apoptosis in both PANC-1 and SW1990 cells. Meanwhile, atorvastatin treatment remarkably suppressed the expression of NGF, BDNF, and NT-3 as well as that of their downstream receptors Trk A and Trk C. CONCLUSIONS: These results provide evidence that atorvastatin inhibits the proliferation, migration and invasion ability of human PC cells, and atorvastatin may exert the anti-tumor effect in PC via the inhibition of neurotrophin signaling pathway.