Cargando…

The correlation of ESCO1 expression with a prognosis of prostate cancer and anti-tumor effect of ESCO1 silencing

BACKGROUND: Recently, it has been reported that establishment of sister chromatid cohesion N-acetyltransferase 1 (ESCO1) is involved in tumorigenesis. However, its role in prostate cancer remains unclear. In the present study, the association between ESCO1 expression and the prognosis of prostate ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hui, Lv, Yan-Ju, Xu, Wan-Hai, Pang, Wei-Feng, Zhao, Yu-Ying, Yang, Ning, Wang, Zhi-Peng, Lu, Lu, Liu, Ying, Zhang, Shi-Ying, Yuan, Xue-Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8798848/
https://www.ncbi.nlm.nih.gov/pubmed/35116834
http://dx.doi.org/10.21037/tcr.2019.05.34
Descripción
Sumario:BACKGROUND: Recently, it has been reported that establishment of sister chromatid cohesion N-acetyltransferase 1 (ESCO1) is involved in tumorigenesis. However, its role in prostate cancer remains unclear. In the present study, the association between ESCO1 expression and the prognosis of prostate cancer was investigated, and the potential molecular mechanisms underlying its actions in tumor progression were also examined. METHODS: Immunohistochemical analysis was performed to detect the expression of ESCO1 in benign prostatic hyperplasia (BPH), human prostate cancer, and metastasis tissue samples, and the association between the establishment of ESCO1 expression and the prognosis of prostate cancer was investigated. The effect of ESCO1 expression on the viability, migration, and invasion of prostate cancer cells in vitro was analyzed, along with the effect of ESCO1 silencing on the growth of prostate tumors in vivo. RESULTS: The results demonstrated an increase in the expression of ESCO1 in prostate cancer tissue when compared with BPH, and it was significantly associated with tumor malignancy and poor patient survival. Additionally, knockdown of ESCO1 significantly inhibited the viability and migration of prostate cancer cell. Furthermore, we found that knockdown of ESCO1 significantly inhibited tumor growth in vivo. Pathway analysis identified that the silencing of ESCO1 significantly decreased the phosphorylation levels of protein kinase B. CONCLUSIONS: The results of the present study indicate that ESCO1 plays a vital role in the progression of human prostate cancer; furthermore, ESCO1 may potentially serve as a prognostic marker and a novel therapeutic target for this disease.