Cargando…

ADRB2 is a potential protective gene in breast cancer by regulating tumor immune microenvironment

BACKGROUND: Breast cancer (BRCA) is the leading cause of cancer death among females. Studies suggested that β-adrenoceptors involved in tumor progression by regulating immune system. However, how ADRB2 affects the immune infiltration in BRCA is still being unraveled. METHODS: Expressions of ADRB2 in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Xiang, Chen, Liang, Yang, Aiming, Lv, Zhaoyu, Xiong, Meng, Shan, Chengxiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8798932/
https://www.ncbi.nlm.nih.gov/pubmed/35116377
http://dx.doi.org/10.21037/tcr-21-1257
Descripción
Sumario:BACKGROUND: Breast cancer (BRCA) is the leading cause of cancer death among females. Studies suggested that β-adrenoceptors involved in tumor progression by regulating immune system. However, how ADRB2 affects the immune infiltration in BRCA is still being unraveled. METHODS: Expressions of ADRB2 in multiple tissues, cancers and blood cells were analyzed by using the Human Protein Atlas and UALCAN database. Expression differentiation of ADRB2 in tumor microenvironment (TME) of BRCA was detected in TISCH database. Correlations between ADRB2 and immune cell infiltration were analyzed by TIMER 2.0, and co-expression genes of ADRB2 were obtained from the cBioPortal website. Functional enrichment analyses and protein-protein interactions were constructed as well. Finally, the potential mechanisms of ADRB2 and candidate drugs targeting BRCA were discussed by using the Metascape, STITCH and Cmap tools. RESULTS: ADRB2 was significantly down-regulated in BRCA, and lower ADRB2 expression often resulted in worse prognosis in BRCA patients. ADRB2 was mainly expressed in breast tissue and blood. Among blood cell subtypes and TME of BRCA, ADRB2 was specifically expressed in T cell subtypes. Also, ADRB2 expression level was positively correlated with the infiltration levels of immune cells such as CD4+ T cell, CD8+ T cell, Tγδ and myeloid DC while negatively correlated with Treg, Tfh and myeloid-derived suppressor cell. Furthermore, functional enrichment analyses revealed that most enriched pathways were immune-related, especially in T cell-related pathways. Also, transcription factors (TFs) analyses showed that most downstream TFs regulated by ADRB2 were immune-related, and most candidate drugs had promising anti-tumor effects. CONCLUSIONS: In conclusion, ADRB2 was a potential protective gene in BRCA, and it might play a vital role in regulating immune responses. The expression level of ADRB2 was positively correlated with immune cells infiltration in BRCA, especially for T cells. Therefore, ADRB2 would be a target for boosting immunotherapy effects in BRCA.