Cargando…

miRNA-425-5p enhances diffuse large B cell lymphoma growth by targeting PTEN

BACKGROUND: At present, cancer is one of the greatest threats to mankind, and is associated with the highest rates of morbidity and comorbidity. Recently, the advancements in molecular biology have led to an in-depth understanding of the underlying pathophysiology, which may further impact the lead...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Weihao, Chen, Longtian, Chen, Congjie, Yu, Lian, Zheng, Junqiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799000/
https://www.ncbi.nlm.nih.gov/pubmed/35116342
http://dx.doi.org/10.21037/tcr-21-2394
Descripción
Sumario:BACKGROUND: At present, cancer is one of the greatest threats to mankind, and is associated with the highest rates of morbidity and comorbidity. Recently, the advancements in molecular biology have led to an in-depth understanding of the underlying pathophysiology, which may further impact the lead time in the context of early discovery and effective therapy of cancer. Therefore, the present study proposes a better understanding of the role of micro(miR)-425-5p in diffuse large B-cell lymphoma (DLBC). METHODS: qRT-PCR was carried out to detect the relevant proteins, miRNA and mRNA RNA gene expression in DLBC cells. The effect of miR-425-5p on DLBC growth was examined by CCK-8 and colony formation assays. The binding relationship between genes was verified by dual-luciferase reporter gene assay. RESULTS: We demonstrated how the over-expression of miR-425-5p can lead to increased progression of DLBC by increasing the cellular proliferation rate and colony-forming ability. Additionally, we also found that the expression of miR-425-5p could be significantly inhibited on the basis of phosphatase and tensin homolog (PTEN) signaling pathways. CONCLUSIONS: The present study concludes that miR-425-5p is responsible for the oncogenic progression and relapse of DLBC tumorigenesis via PTEN/PI3K signaling, which can thus be effectively used to achieve better therapeutic outcomes.