Cargando…
Developing prognostic gene panel of survival time in lung adenocarcinoma patients using machine learning
BACKGROUND: Transcriptome data generates massive amounts of information that can be used for characterization and prognosis of patient outcomes for many diseases. The goal of our research is to predict the survival time of lung adenocarcinoma patients and improve the accuracy of classifying the long...
Autores principales: | Liu, Yidi, Yang, Mu, Sun, Weiwei, Zhang, Mingqiang, Sun, Jiao, Wang, Wenjuan, Tang, Dongqi, Yuan, Dongfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799101/ https://www.ncbi.nlm.nih.gov/pubmed/35117753 http://dx.doi.org/10.21037/tcr-19-2739 |
Ejemplares similares
-
An improved clear cell renal cell carcinoma stage prediction model based on gene sets
por: Li, Fangjun, et al.
Publicado: (2020) -
Prognostic Impact of the Angiogenic Gene POSTN and Its Related Genes on Lung Adenocarcinoma
por: Sun, Dongfeng, et al.
Publicado: (2022) -
Deep learning for predicting subtype classification and survival of lung adenocarcinoma on computed tomography
por: Wang, Chengdi, et al.
Publicado: (2021) -
A Robust Panel Based on Mitochondrial Localized Proteins for Prognostic Prediction of Lung Adenocarcinoma
por: Chen, Weifeng, et al.
Publicado: (2021) -
Identification of a four-gene panel predicting overall survival for lung adenocarcinoma
por: Li, Chunyu, et al.
Publicado: (2020)