Cargando…
Targeting MUC1-C reverses the cisplatin resistance of esophageal squamous cell carcinoma in vitro and in vivo
BACKGROUND: The efficacy of chemotherapeutic treatment of esophageal squamous cell carcinoma (ESCC) is limited by drug resistance during. This severely compromises the long-term survival rate of patients. Therefore, reversing chemotherapy resistance in ESCC may improve the therapeutic outcome. Here,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799139/ https://www.ncbi.nlm.nih.gov/pubmed/35116398 http://dx.doi.org/10.21037/tcr-20-2495 |
Sumario: | BACKGROUND: The efficacy of chemotherapeutic treatment of esophageal squamous cell carcinoma (ESCC) is limited by drug resistance during. This severely compromises the long-term survival rate of patients. Therefore, reversing chemotherapy resistance in ESCC may improve the therapeutic outcome. Here, we investigated the molecular mechanism of MUC1-C, the C-terminal transmembrane subunit of MUC1 (a transmembrane heterodimer protein), and its role in the reversal of cisplatin sensitivity in ESCC cells. METHODS: We assessed the efficacy of GO-203, a cell-penetrating peptide, as a chemotherapeutic target of MUC1-C using cell proliferation, colony-forming, and transwell assays. Apoptosis was analyzed in GO-203-treated cells by flow cytometry. Tumor xenograft assay was performed in nude mice to corroborate our in vitro findings. RESULTS: GO-203 treatment inhibited cell proliferation and restrained the migration and invasion of cisplatin-resistant ESCC. Moreover, targeting MUC1 resulted in enhanced apoptosis in GO-203-treated cells. These in vitro pro-apoptotic and anti-proliferative effects of GO-203 in combination with cisplatin were validated by in vivo models. Significantly smaller tumor volumes were observed in ESCCs-xenografted nude mice treated with GO-203 in combination with cisplatin compared with mice treated with monotherapy or their control counterparts. We found that blocking MUC1-C with GO-203 significantly reversed the cisplatin resistance in ESCC via modulating Akt and ERK pathways. CONCLUSIONS: Our findings suggest that GO-203 may hold potential as an ancillary therapeutic molecule and a chemosensitizer to improve the outcomes of cisplatin-based chemotherapy especially in patients with cisplatin-resistant ESCC. |
---|