Cargando…
Image Motion Deblurring Based on Deep Residual Shrinkage and Generative Adversarial Networks
A network structure (DRSN-GAN) is proposed for image motion deblurring that combines a deep residual shrinkage network (DRSN) with a generative adversarial network (GAN) to address the issues of poor noise immunity and low generalizability in deblurring algorithms based solely on GANs. First, an end...
Autores principales: | Jiang, Wenbo, Liu, Anshun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799329/ https://www.ncbi.nlm.nih.gov/pubmed/35096042 http://dx.doi.org/10.1155/2022/5605846 |
Ejemplares similares
-
Cone-beam CT image quality improvement using Cycle-Deblur consistent adversarial networks (Cycle-Deblur GAN) for chest CT imaging in breast cancer patients
por: Tien, Hui-Ju, et al.
Publicado: (2021) -
SlimDeblurGAN-Based Motion Deblurring and Marker Detection for Autonomous Drone Landing
por: Truong, Noi Quang, et al.
Publicado: (2020) -
SharpGAN: Dynamic Scene Deblurring Method for Smart Ship Based on Receptive Field Block and Generative Adversarial Networks
por: Feng, Hui, et al.
Publicado: (2021) -
Frequency Disentanglement Distillation Image Deblurring Network
por: Liu, Yiming, et al.
Publicado: (2021) -
Blind UAV Images Deblurring Based on Discriminative Networks
por: Wang, Ruihua, et al.
Publicado: (2018)