Cargando…
Feature Fusion-Based Improved Capsule Network for sEMG Signal Recognition
This paper proposes a feature fusion-based improved capsule network (FFiCAPS) to improve the performance of surface electromyogram (sEMG) signal recognition with the purpose of distinguishing hand gestures. Current deep learning models, especially convolution neural networks (CNNs), only take into a...
Autores principales: | Wang, Wanliang, You, Wenbo, Wang, Zheng, Zhao, Yanwei, Wei, Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799348/ https://www.ncbi.nlm.nih.gov/pubmed/35096047 http://dx.doi.org/10.1155/2022/7603319 |
Ejemplares similares
-
LST-EMG-Net: Long short-term transformer feature fusion network for sEMG gesture recognition
por: Zhang, Wenli, et al.
Publicado: (2023) -
A novel concatenate feature fusion RCNN architecture for sEMG-based hand gesture recognition
por: Xu, Pufan, et al.
Publicado: (2022) -
Fusion Learning for sEMG Recognition of Multiple Upper-Limb Rehabilitation Movements
por: Zhong, Tianyang, et al.
Publicado: (2021) -
Voiceless Bangla vowel recognition using sEMG signal
por: Mostafa, S. S., et al.
Publicado: (2016) -
A Spiking Neural Network in sEMG Feature Extraction
por: Lobov, Sergey, et al.
Publicado: (2015)