Cargando…

Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge

Artificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies. However, results have been limited to individual studies, lacking validation in multinational settings. Competitions have been shown to be accelerators for medical imaging innovations, but their impact is hind...

Descripción completa

Detalles Bibliográficos
Autores principales: Bulten, Wouter, Kartasalo, Kimmo, Chen, Po-Hsuan Cameron, Ström, Peter, Pinckaers, Hans, Nagpal, Kunal, Cai, Yuannan, Steiner, David F., van Boven, Hester, Vink, Robert, Hulsbergen-van de Kaa, Christina, van der Laak, Jeroen, Amin, Mahul B., Evans, Andrew J., van der Kwast, Theodorus, Allan, Robert, Humphrey, Peter A., Grönberg, Henrik, Samaratunga, Hemamali, Delahunt, Brett, Tsuzuki, Toyonori, Häkkinen, Tomi, Egevad, Lars, Demkin, Maggie, Dane, Sohier, Tan, Fraser, Valkonen, Masi, Corrado, Greg S., Peng, Lily, Mermel, Craig H., Ruusuvuori, Pekka, Litjens, Geert, Eklund, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799467/
https://www.ncbi.nlm.nih.gov/pubmed/35027755
http://dx.doi.org/10.1038/s41591-021-01620-2
_version_ 1784642076784197632
author Bulten, Wouter
Kartasalo, Kimmo
Chen, Po-Hsuan Cameron
Ström, Peter
Pinckaers, Hans
Nagpal, Kunal
Cai, Yuannan
Steiner, David F.
van Boven, Hester
Vink, Robert
Hulsbergen-van de Kaa, Christina
van der Laak, Jeroen
Amin, Mahul B.
Evans, Andrew J.
van der Kwast, Theodorus
Allan, Robert
Humphrey, Peter A.
Grönberg, Henrik
Samaratunga, Hemamali
Delahunt, Brett
Tsuzuki, Toyonori
Häkkinen, Tomi
Egevad, Lars
Demkin, Maggie
Dane, Sohier
Tan, Fraser
Valkonen, Masi
Corrado, Greg S.
Peng, Lily
Mermel, Craig H.
Ruusuvuori, Pekka
Litjens, Geert
Eklund, Martin
author_facet Bulten, Wouter
Kartasalo, Kimmo
Chen, Po-Hsuan Cameron
Ström, Peter
Pinckaers, Hans
Nagpal, Kunal
Cai, Yuannan
Steiner, David F.
van Boven, Hester
Vink, Robert
Hulsbergen-van de Kaa, Christina
van der Laak, Jeroen
Amin, Mahul B.
Evans, Andrew J.
van der Kwast, Theodorus
Allan, Robert
Humphrey, Peter A.
Grönberg, Henrik
Samaratunga, Hemamali
Delahunt, Brett
Tsuzuki, Toyonori
Häkkinen, Tomi
Egevad, Lars
Demkin, Maggie
Dane, Sohier
Tan, Fraser
Valkonen, Masi
Corrado, Greg S.
Peng, Lily
Mermel, Craig H.
Ruusuvuori, Pekka
Litjens, Geert
Eklund, Martin
author_sort Bulten, Wouter
collection PubMed
description Artificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies. However, results have been limited to individual studies, lacking validation in multinational settings. Competitions have been shown to be accelerators for medical imaging innovations, but their impact is hindered by lack of reproducibility and independent validation. With this in mind, we organized the PANDA challenge—the largest histopathology competition to date, joined by 1,290 developers—to catalyze development of reproducible AI algorithms for Gleason grading using 10,616 digitized prostate biopsies. We validated that a diverse set of submitted algorithms reached pathologist-level performance on independent cross-continental cohorts, fully blinded to the algorithm developers. On United States and European external validation sets, the algorithms achieved agreements of 0.862 (quadratically weighted κ, 95% confidence interval (CI), 0.840–0.884) and 0.868 (95% CI, 0.835–0.900) with expert uropathologists. Successful generalization across different patient populations, laboratories and reference standards, achieved by a variety of algorithmic approaches, warrants evaluating AI-based Gleason grading in prospective clinical trials.
format Online
Article
Text
id pubmed-8799467
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-87994672022-02-07 Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge Bulten, Wouter Kartasalo, Kimmo Chen, Po-Hsuan Cameron Ström, Peter Pinckaers, Hans Nagpal, Kunal Cai, Yuannan Steiner, David F. van Boven, Hester Vink, Robert Hulsbergen-van de Kaa, Christina van der Laak, Jeroen Amin, Mahul B. Evans, Andrew J. van der Kwast, Theodorus Allan, Robert Humphrey, Peter A. Grönberg, Henrik Samaratunga, Hemamali Delahunt, Brett Tsuzuki, Toyonori Häkkinen, Tomi Egevad, Lars Demkin, Maggie Dane, Sohier Tan, Fraser Valkonen, Masi Corrado, Greg S. Peng, Lily Mermel, Craig H. Ruusuvuori, Pekka Litjens, Geert Eklund, Martin Nat Med Article Artificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies. However, results have been limited to individual studies, lacking validation in multinational settings. Competitions have been shown to be accelerators for medical imaging innovations, but their impact is hindered by lack of reproducibility and independent validation. With this in mind, we organized the PANDA challenge—the largest histopathology competition to date, joined by 1,290 developers—to catalyze development of reproducible AI algorithms for Gleason grading using 10,616 digitized prostate biopsies. We validated that a diverse set of submitted algorithms reached pathologist-level performance on independent cross-continental cohorts, fully blinded to the algorithm developers. On United States and European external validation sets, the algorithms achieved agreements of 0.862 (quadratically weighted κ, 95% confidence interval (CI), 0.840–0.884) and 0.868 (95% CI, 0.835–0.900) with expert uropathologists. Successful generalization across different patient populations, laboratories and reference standards, achieved by a variety of algorithmic approaches, warrants evaluating AI-based Gleason grading in prospective clinical trials. Nature Publishing Group US 2022-01-13 2022 /pmc/articles/PMC8799467/ /pubmed/35027755 http://dx.doi.org/10.1038/s41591-021-01620-2 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Bulten, Wouter
Kartasalo, Kimmo
Chen, Po-Hsuan Cameron
Ström, Peter
Pinckaers, Hans
Nagpal, Kunal
Cai, Yuannan
Steiner, David F.
van Boven, Hester
Vink, Robert
Hulsbergen-van de Kaa, Christina
van der Laak, Jeroen
Amin, Mahul B.
Evans, Andrew J.
van der Kwast, Theodorus
Allan, Robert
Humphrey, Peter A.
Grönberg, Henrik
Samaratunga, Hemamali
Delahunt, Brett
Tsuzuki, Toyonori
Häkkinen, Tomi
Egevad, Lars
Demkin, Maggie
Dane, Sohier
Tan, Fraser
Valkonen, Masi
Corrado, Greg S.
Peng, Lily
Mermel, Craig H.
Ruusuvuori, Pekka
Litjens, Geert
Eklund, Martin
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
title Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
title_full Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
title_fullStr Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
title_full_unstemmed Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
title_short Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
title_sort artificial intelligence for diagnosis and gleason grading of prostate cancer: the panda challenge
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799467/
https://www.ncbi.nlm.nih.gov/pubmed/35027755
http://dx.doi.org/10.1038/s41591-021-01620-2
work_keys_str_mv AT bultenwouter artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT kartasalokimmo artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT chenpohsuancameron artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT strompeter artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT pinckaershans artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT nagpalkunal artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT caiyuannan artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT steinerdavidf artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT vanbovenhester artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT vinkrobert artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT hulsbergenvandekaachristina artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT vanderlaakjeroen artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT aminmahulb artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT evansandrewj artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT vanderkwasttheodorus artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT allanrobert artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT humphreypetera artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT gronberghenrik artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT samaratungahemamali artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT delahuntbrett artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT tsuzukitoyonori artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT hakkinentomi artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT egevadlars artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT demkinmaggie artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT danesohier artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT tanfraser artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT valkonenmasi artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT corradogregs artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT penglily artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT mermelcraigh artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT ruusuvuoripekka artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT litjensgeert artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT eklundmartin artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge
AT artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge