Cargando…
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
Artificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies. However, results have been limited to individual studies, lacking validation in multinational settings. Competitions have been shown to be accelerators for medical imaging innovations, but their impact is hind...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799467/ https://www.ncbi.nlm.nih.gov/pubmed/35027755 http://dx.doi.org/10.1038/s41591-021-01620-2 |
_version_ | 1784642076784197632 |
---|---|
author | Bulten, Wouter Kartasalo, Kimmo Chen, Po-Hsuan Cameron Ström, Peter Pinckaers, Hans Nagpal, Kunal Cai, Yuannan Steiner, David F. van Boven, Hester Vink, Robert Hulsbergen-van de Kaa, Christina van der Laak, Jeroen Amin, Mahul B. Evans, Andrew J. van der Kwast, Theodorus Allan, Robert Humphrey, Peter A. Grönberg, Henrik Samaratunga, Hemamali Delahunt, Brett Tsuzuki, Toyonori Häkkinen, Tomi Egevad, Lars Demkin, Maggie Dane, Sohier Tan, Fraser Valkonen, Masi Corrado, Greg S. Peng, Lily Mermel, Craig H. Ruusuvuori, Pekka Litjens, Geert Eklund, Martin |
author_facet | Bulten, Wouter Kartasalo, Kimmo Chen, Po-Hsuan Cameron Ström, Peter Pinckaers, Hans Nagpal, Kunal Cai, Yuannan Steiner, David F. van Boven, Hester Vink, Robert Hulsbergen-van de Kaa, Christina van der Laak, Jeroen Amin, Mahul B. Evans, Andrew J. van der Kwast, Theodorus Allan, Robert Humphrey, Peter A. Grönberg, Henrik Samaratunga, Hemamali Delahunt, Brett Tsuzuki, Toyonori Häkkinen, Tomi Egevad, Lars Demkin, Maggie Dane, Sohier Tan, Fraser Valkonen, Masi Corrado, Greg S. Peng, Lily Mermel, Craig H. Ruusuvuori, Pekka Litjens, Geert Eklund, Martin |
author_sort | Bulten, Wouter |
collection | PubMed |
description | Artificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies. However, results have been limited to individual studies, lacking validation in multinational settings. Competitions have been shown to be accelerators for medical imaging innovations, but their impact is hindered by lack of reproducibility and independent validation. With this in mind, we organized the PANDA challenge—the largest histopathology competition to date, joined by 1,290 developers—to catalyze development of reproducible AI algorithms for Gleason grading using 10,616 digitized prostate biopsies. We validated that a diverse set of submitted algorithms reached pathologist-level performance on independent cross-continental cohorts, fully blinded to the algorithm developers. On United States and European external validation sets, the algorithms achieved agreements of 0.862 (quadratically weighted κ, 95% confidence interval (CI), 0.840–0.884) and 0.868 (95% CI, 0.835–0.900) with expert uropathologists. Successful generalization across different patient populations, laboratories and reference standards, achieved by a variety of algorithmic approaches, warrants evaluating AI-based Gleason grading in prospective clinical trials. |
format | Online Article Text |
id | pubmed-8799467 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-87994672022-02-07 Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge Bulten, Wouter Kartasalo, Kimmo Chen, Po-Hsuan Cameron Ström, Peter Pinckaers, Hans Nagpal, Kunal Cai, Yuannan Steiner, David F. van Boven, Hester Vink, Robert Hulsbergen-van de Kaa, Christina van der Laak, Jeroen Amin, Mahul B. Evans, Andrew J. van der Kwast, Theodorus Allan, Robert Humphrey, Peter A. Grönberg, Henrik Samaratunga, Hemamali Delahunt, Brett Tsuzuki, Toyonori Häkkinen, Tomi Egevad, Lars Demkin, Maggie Dane, Sohier Tan, Fraser Valkonen, Masi Corrado, Greg S. Peng, Lily Mermel, Craig H. Ruusuvuori, Pekka Litjens, Geert Eklund, Martin Nat Med Article Artificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies. However, results have been limited to individual studies, lacking validation in multinational settings. Competitions have been shown to be accelerators for medical imaging innovations, but their impact is hindered by lack of reproducibility and independent validation. With this in mind, we organized the PANDA challenge—the largest histopathology competition to date, joined by 1,290 developers—to catalyze development of reproducible AI algorithms for Gleason grading using 10,616 digitized prostate biopsies. We validated that a diverse set of submitted algorithms reached pathologist-level performance on independent cross-continental cohorts, fully blinded to the algorithm developers. On United States and European external validation sets, the algorithms achieved agreements of 0.862 (quadratically weighted κ, 95% confidence interval (CI), 0.840–0.884) and 0.868 (95% CI, 0.835–0.900) with expert uropathologists. Successful generalization across different patient populations, laboratories and reference standards, achieved by a variety of algorithmic approaches, warrants evaluating AI-based Gleason grading in prospective clinical trials. Nature Publishing Group US 2022-01-13 2022 /pmc/articles/PMC8799467/ /pubmed/35027755 http://dx.doi.org/10.1038/s41591-021-01620-2 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Bulten, Wouter Kartasalo, Kimmo Chen, Po-Hsuan Cameron Ström, Peter Pinckaers, Hans Nagpal, Kunal Cai, Yuannan Steiner, David F. van Boven, Hester Vink, Robert Hulsbergen-van de Kaa, Christina van der Laak, Jeroen Amin, Mahul B. Evans, Andrew J. van der Kwast, Theodorus Allan, Robert Humphrey, Peter A. Grönberg, Henrik Samaratunga, Hemamali Delahunt, Brett Tsuzuki, Toyonori Häkkinen, Tomi Egevad, Lars Demkin, Maggie Dane, Sohier Tan, Fraser Valkonen, Masi Corrado, Greg S. Peng, Lily Mermel, Craig H. Ruusuvuori, Pekka Litjens, Geert Eklund, Martin Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge |
title | Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge |
title_full | Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge |
title_fullStr | Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge |
title_full_unstemmed | Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge |
title_short | Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge |
title_sort | artificial intelligence for diagnosis and gleason grading of prostate cancer: the panda challenge |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799467/ https://www.ncbi.nlm.nih.gov/pubmed/35027755 http://dx.doi.org/10.1038/s41591-021-01620-2 |
work_keys_str_mv | AT bultenwouter artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT kartasalokimmo artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT chenpohsuancameron artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT strompeter artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT pinckaershans artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT nagpalkunal artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT caiyuannan artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT steinerdavidf artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT vanbovenhester artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT vinkrobert artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT hulsbergenvandekaachristina artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT vanderlaakjeroen artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT aminmahulb artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT evansandrewj artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT vanderkwasttheodorus artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT allanrobert artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT humphreypetera artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT gronberghenrik artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT samaratungahemamali artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT delahuntbrett artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT tsuzukitoyonori artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT hakkinentomi artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT egevadlars artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT demkinmaggie artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT danesohier artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT tanfraser artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT valkonenmasi artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT corradogregs artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT penglily artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT mermelcraigh artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT ruusuvuoripekka artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT litjensgeert artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT eklundmartin artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge AT artificialintelligencefordiagnosisandgleasongradingofprostatecancerthepandachallenge |