Cargando…

KLF2 up-regulates IRF4/HDAC7 to protect neonatal rats from hypoxic-ischemic brain damage

Neonatal brain hypoxic ischemic injury is a devastating event causing permanent brain damage. The current study set out to explore the role of Kruppel-like factor 2 (KLF2) and its downstream molecular mechanism on hypoxic-ischemic brain damage (HIBD) in neonatal rats. First, we adopted a modified Ri...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Fan, Li, Chunlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799701/
https://www.ncbi.nlm.nih.gov/pubmed/35091544
http://dx.doi.org/10.1038/s41420-022-00813-z
Descripción
Sumario:Neonatal brain hypoxic ischemic injury is a devastating event causing permanent brain damage. The current study set out to explore the role of Kruppel-like factor 2 (KLF2) and its downstream molecular mechanism on hypoxic-ischemic brain damage (HIBD) in neonatal rats. First, we adopted a modified Rice method to develop a HIBD model in postnatal day seven Sprague Dawley (SD) rat pups. Next, neuronal damage, morphological changes, and neuronal apoptosis were documented in the vulnerable hippocampal CA1 region and evaluated using Nissl staining, H&E staining, and TUNEL assay, respectively. Meanwhile, a hypoxic-ischemic model using the oxygen-glucose deprivation (OGD) method was established in cortical neurons isolated from day one SD rat pups, followed by MTT and flow cytometry detections of the cell survival rate and apoptotic ability. Experimental findings revealed that KLF2 was poorly-expressed in the brain tissues of HIBD rats and in the OGD-induced neurons. We found that KLF2 overexpression inhibited neuron apoptosis in vitro and in vivo, which was also observed to inhibit brain injury in the HIBD rats and alleviate neuronal damage of OGD-treated neurons. Besides, as dual luciferase reporter gene assay and chromatin immunoprecipitation established that KLF2 bound to the interferon regulatory factor 4 (IRF4) promoter, which promoted the binding of IRF4 in the promoter of histone deacetylase 7 (HDAC7) to augment its expression, thereby inhibiting neuronal apoptosis and brain damage. In conclusion, our findings indicated that KLF2 could increase the expression of IRF4 to up-regulate the expression of HDAC7, which protects against HIBD in neonatal rats.