Cargando…
A delayed plant disease model with Caputo fractional derivatives
We analyze a time-delay Caputo-type fractional mathematical model containing the infection rate of Beddington–DeAngelis functional response to study the structure of a vector-borne plant epidemic. We prove the unique global solution existence for the given delay mathematical model by using fixed poi...
Autores principales: | Kumar, Pushpendra, Baleanu, Dumitru, Erturk, Vedat Suat, Inc, Mustafa, Govindaraj, V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799979/ https://www.ncbi.nlm.nih.gov/pubmed/35450199 http://dx.doi.org/10.1186/s13662-022-03684-x |
Ejemplares similares
-
A study on the dynamics of alkali–silica chemical reaction by using Caputo fractional derivative
por: Kumar, Pushpendra, et al.
Publicado: (2022) -
Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives
por: Erturk, Vedat Suat, et al.
Publicado: (2020) -
Prediction studies of the epidemic peak of coronavirus disease in Brazil via new generalised Caputo type fractional derivatives
por: Kumar, Pushpendra, et al.
Publicado: (2021) -
Effects of greenhouse gases and hypoxia on the population of aquatic species: a fractional mathematical model
por: Kumar, Pushpendra, et al.
Publicado: (2022) -
A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative
por: Baleanu, Dumitru, et al.
Publicado: (2020)