Cargando…
Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer
Nucleic acid drugs are highly applicable for cancer immunotherapy with promising therapeutic effects, while targeting delivery of these drugs to disease lesions remains challenging. Cationic polymeric nanoparticles have paved the way for efficient delivery of nucleic acid drugs, and achieved stimuli...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800000/ https://www.ncbi.nlm.nih.gov/pubmed/35127391 http://dx.doi.org/10.1016/j.apsb.2021.06.006 |
_version_ | 1784642170384285696 |
---|---|
author | Fang, Lei Zhao, Zitong Wang, Jue Xiao, Ping Sun, Xiangshi Ding, Yaping Zhang, Pengcheng Wang, Dangge Li, Yaping |
author_facet | Fang, Lei Zhao, Zitong Wang, Jue Xiao, Ping Sun, Xiangshi Ding, Yaping Zhang, Pengcheng Wang, Dangge Li, Yaping |
author_sort | Fang, Lei |
collection | PubMed |
description | Nucleic acid drugs are highly applicable for cancer immunotherapy with promising therapeutic effects, while targeting delivery of these drugs to disease lesions remains challenging. Cationic polymeric nanoparticles have paved the way for efficient delivery of nucleic acid drugs, and achieved stimuli-responsive disassembly in tumor microenvironment (TME). However, TME is highly heterogeneous between individuals, and most nanocarriers lack active-control over the release of loaded nucleic acid drugs, which will definitely reduce the therapeutic efficacy. Herein, we have developed a light-controllable charge-reversal nanoparticle (LCCN) with controlled release of polyinosinic-polycytidylic acid [Poly(I:C)] to treat triple negative breast cancer (TNBC) by enhanced photodynamic immunotherapy. The nanoparticles keep suitably positive charge for stable loading of Poly(I:C), while rapidly reverse to negative charge after near-infrared light irradiation to release Poly(I:C). LCCN-Poly(I:C) nanoparticles trigger effective phototoxicity and immunogenic cell death on 4T1 tumor cells, elevate antitumor immune responses and inhibit the growth of primary and abscopal 4T1 tumors in mice. The approach provides a promising strategy for controlled release of various nucleic acid-based immune modulators, which may enhance the efficacy of photodynamic immunotherapy against TNBC |
format | Online Article Text |
id | pubmed-8800000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-88000002022-02-03 Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer Fang, Lei Zhao, Zitong Wang, Jue Xiao, Ping Sun, Xiangshi Ding, Yaping Zhang, Pengcheng Wang, Dangge Li, Yaping Acta Pharm Sin B Original Article Nucleic acid drugs are highly applicable for cancer immunotherapy with promising therapeutic effects, while targeting delivery of these drugs to disease lesions remains challenging. Cationic polymeric nanoparticles have paved the way for efficient delivery of nucleic acid drugs, and achieved stimuli-responsive disassembly in tumor microenvironment (TME). However, TME is highly heterogeneous between individuals, and most nanocarriers lack active-control over the release of loaded nucleic acid drugs, which will definitely reduce the therapeutic efficacy. Herein, we have developed a light-controllable charge-reversal nanoparticle (LCCN) with controlled release of polyinosinic-polycytidylic acid [Poly(I:C)] to treat triple negative breast cancer (TNBC) by enhanced photodynamic immunotherapy. The nanoparticles keep suitably positive charge for stable loading of Poly(I:C), while rapidly reverse to negative charge after near-infrared light irradiation to release Poly(I:C). LCCN-Poly(I:C) nanoparticles trigger effective phototoxicity and immunogenic cell death on 4T1 tumor cells, elevate antitumor immune responses and inhibit the growth of primary and abscopal 4T1 tumors in mice. The approach provides a promising strategy for controlled release of various nucleic acid-based immune modulators, which may enhance the efficacy of photodynamic immunotherapy against TNBC Elsevier 2022-01 2021-06-15 /pmc/articles/PMC8800000/ /pubmed/35127391 http://dx.doi.org/10.1016/j.apsb.2021.06.006 Text en © 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Fang, Lei Zhao, Zitong Wang, Jue Xiao, Ping Sun, Xiangshi Ding, Yaping Zhang, Pengcheng Wang, Dangge Li, Yaping Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer |
title | Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer |
title_full | Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer |
title_fullStr | Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer |
title_full_unstemmed | Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer |
title_short | Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer |
title_sort | light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800000/ https://www.ncbi.nlm.nih.gov/pubmed/35127391 http://dx.doi.org/10.1016/j.apsb.2021.06.006 |
work_keys_str_mv | AT fanglei lightcontrollablechargereversalnanoparticleswithpolyinosinicpolycytidylicacidforenhancingimmunotherapyoftriplenegativebreastcancer AT zhaozitong lightcontrollablechargereversalnanoparticleswithpolyinosinicpolycytidylicacidforenhancingimmunotherapyoftriplenegativebreastcancer AT wangjue lightcontrollablechargereversalnanoparticleswithpolyinosinicpolycytidylicacidforenhancingimmunotherapyoftriplenegativebreastcancer AT xiaoping lightcontrollablechargereversalnanoparticleswithpolyinosinicpolycytidylicacidforenhancingimmunotherapyoftriplenegativebreastcancer AT sunxiangshi lightcontrollablechargereversalnanoparticleswithpolyinosinicpolycytidylicacidforenhancingimmunotherapyoftriplenegativebreastcancer AT dingyaping lightcontrollablechargereversalnanoparticleswithpolyinosinicpolycytidylicacidforenhancingimmunotherapyoftriplenegativebreastcancer AT zhangpengcheng lightcontrollablechargereversalnanoparticleswithpolyinosinicpolycytidylicacidforenhancingimmunotherapyoftriplenegativebreastcancer AT wangdangge lightcontrollablechargereversalnanoparticleswithpolyinosinicpolycytidylicacidforenhancingimmunotherapyoftriplenegativebreastcancer AT liyaping lightcontrollablechargereversalnanoparticleswithpolyinosinicpolycytidylicacidforenhancingimmunotherapyoftriplenegativebreastcancer |