Cargando…
Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management
The COVID-19 pandemic has caused a global crisis with 47,209,305 confirmed cases and 1,209,505 confirmed deaths worldwide as of November 2, 2020. Forecasting confirmed cases and understanding the virus dynamics is necessary to provide valuable insights into the growth of the outbreak and facilitate...
Autores principales: | Masum, Mohammad, Masud, M.A., Adnan, Muhaiminul Islam, Shahriar, Hossain, Kim, Sangil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800166/ https://www.ncbi.nlm.nih.gov/pubmed/35125526 http://dx.doi.org/10.1016/j.seps.2022.101249 |
Ejemplares similares
-
SARS epidemical forecast research in mathematical model
por: Guanghong, Ding, et al.
Publicado: (2013) -
Forecasting Future Monthly Patient Volume using Deep Learning and Statistical Models
por: Pala, Zeydin, et al.
Publicado: (2023) -
A Comparative Study on Deep Learning Models for COVID-19 Forecast
por: Guo, Ziyuan, et al.
Publicado: (2023) -
An SEIARD epidemic model for COVID-19 in Mexico: Mathematical analysis and state-level forecast
por: Avila-Ponce de León, Ugo, et al.
Publicado: (2020) -
Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review
por: Saleem, Farrukh, et al.
Publicado: (2022)