Cargando…
AI-aided general clinical diagnoses verified by third-parties with dynamic uncertain causality graph extended to also include classification
Artificial intelligence (AI)-aided general clinical diagnosis is helpful to primary clinicians. Machine learning approaches have problems of generalization, interpretability, etc. Dynamic Uncertain Causality Graph (DUCG) based on uncertain casual knowledge provided by clinical experts does not have...
Autores principales: | Zhang, Zhan, Jiao, Yang, Zhang, Mingxia, Wei, Bing, Liu, Xiao, Zhao, Juan, Tian, Fengwei, Hu, Jie, Zhang, Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800413/ https://www.ncbi.nlm.nih.gov/pubmed/35125607 http://dx.doi.org/10.1007/s10462-021-10109-w |
Ejemplares similares
-
Computer-Aided Diagnoses for Sore Throat Based on Dynamic Uncertain Causality Graph
por: Bu, Xusong, et al.
Publicado: (2023) -
An Industrial Fault Diagnostic System Based on a Cubic Dynamic Uncertain Causality Graph
por: Bu, Xusong, et al.
Publicado: (2022) -
Validating and Verifying AI Systems
por: Hand, David J., et al.
Publicado: (2020) -
Differential Diagnostic Reasoning Method for Benign Paroxysmal Positional Vertigo Based on Dynamic Uncertain Causality Graph
por: Dong, Chunling, et al.
Publicado: (2020) -
Anki Tagger: A Generative AI Tool for Aligning Third-Party Resources to Preclinical Curriculum
por: Pendergrast, Tricia, et al.
Publicado: (2023)