Cargando…
Dynamic 3D radiomics analysis using artificial intelligence to assess the stage of COVID-19 on CT images
OBJECTIVE: To develop a dynamic 3D radiomics analysis method using artificial intelligence technique for automatically assessing four disease stages (i.e., early, progressive, peak, and absorption stages) of COVID-19 patients on CT images. METHODS: The dynamic 3D radiomics analysis method was compos...
Autores principales: | Cai, Shengping, Chen, Yang, Zhao, Shixuan, He, Dehuai, Li, Yongjie, Xiong, Nian, Li, Zhidan, Hu, Shaoping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800423/ https://www.ncbi.nlm.nih.gov/pubmed/35094118 http://dx.doi.org/10.1007/s00330-021-08533-1 |
Ejemplares similares
-
Radiomics analysis based on lumbar spine CT to detect osteoporosis
por: Jiang, Yan-Wei, et al.
Publicado: (2022) -
A PET/CT nomogram incorporating SUVmax and CT radiomics for preoperative nodal staging in non-small cell lung cancer
por: Xie, Yunming, et al.
Publicado: (2021) -
A comparison between manual and artificial intelligence–based automatic positioning in CT imaging for COVID-19 patients
por: Gang, Yadong, et al.
Publicado: (2021) -
Artificial intelligence for stepwise diagnosis and monitoring of COVID-19
por: Liang, Hengrui, et al.
Publicado: (2022) -
Advanced gastric cancer: CT radiomics prediction and early detection of downstaging with neoadjuvant chemotherapy
por: Xu, Qinmei, et al.
Publicado: (2021)