Cargando…
Sepsis prediction, early detection, and identification using clinical text for machine learning: a systematic review
OBJECTIVE: To determine the effects of using unstructured clinical text in machine learning (ML) for prediction, early detection, and identification of sepsis. MATERIALS AND METHODS: PubMed, Scopus, ACM DL, dblp, and IEEE Xplore databases were searched. Articles utilizing clinical text for ML or nat...
Autores principales: | Yan, Melissa Y, Gustad, Lise Tuset, Nytrø, Øystein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800516/ https://www.ncbi.nlm.nih.gov/pubmed/34897469 http://dx.doi.org/10.1093/jamia/ocab236 |
Ejemplares similares
-
Early identification of sepsis in hospital inpatients by ward nurses increases 30-day survival
por: Torsvik, Malvin, et al.
Publicado: (2016) -
Return to work after hospitalization for sepsis: a nationwide, registry-based cohort study
por: Skei, Nina Vibeche, et al.
Publicado: (2023) -
Synthetic data for annotation and extraction of family history information from clinical text
por: Brekke, Pål H., et al.
Publicado: (2021) -
Symptoms of anxiety and depression and risk of acute myocardial infarction: the HUNT 2 study
por: Gustad, Lise Tuset, et al.
Publicado: (2014) -
Trends in mortality after a sepsis hospitalization: a nationwide prospective registry study from 2008 to 2021
por: Skei, Nina Vibeche, et al.
Publicado: (2023)