Cargando…
Embedding electronic health records onto a knowledge network recognizes prodromal features of multiple sclerosis and predicts diagnosis
OBJECTIVE: Early identification of chronic diseases is a pillar of precision medicine as it can lead to improved outcomes, reduction of disease burden, and lower healthcare costs. Predictions of a patient’s health trajectory have been improved through the application of machine learning approaches t...
Autores principales: | Nelson, Charlotte A, Bove, Riley, Butte, Atul J, Baranzini, Sergio E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800523/ https://www.ncbi.nlm.nih.gov/pubmed/34915552 http://dx.doi.org/10.1093/jamia/ocab270 |
Ejemplares similares
-
Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings
por: Nelson, Charlotte A., et al.
Publicado: (2019) -
Knowledge Network Embedding of Transcriptomic Data from Spaceflown Mice Uncovers Signs and Symptoms Associated with Terrestrial Diseases
por: Nelson, Charlotte A., et al.
Publicado: (2021) -
ProbOnto: ontology and knowledge base of probability distributions
por: Swat, Maciej J., et al.
Publicado: (2016) -
Time-aware Embeddings of Clinical Data using a Knowledge Graph
por: Soman, Karthik, et al.
Publicado: (2023) -
ROMOP: a light-weight R package for interfacing with OMOP-formatted electronic health record data
por: Glicksberg, Benjamin S, et al.
Publicado: (2019)