Cargando…

White-Light Endoscopic Colorectal Lesion Detection Based on Improved YOLOv5

As an effective tool for colorectal lesion detection, it is still difficult to avoid the phenomenon of missed and false detection when using white-light endoscopy. In order to improve the lesion detection rate of colorectal cancer patients, this paper proposes a real-time lesion diagnosis model (YOL...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Junbo, Xiong, Qilin, Yu, Chang, Qu, Guoqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800609/
https://www.ncbi.nlm.nih.gov/pubmed/35103073
http://dx.doi.org/10.1155/2022/9508004
Descripción
Sumario:As an effective tool for colorectal lesion detection, it is still difficult to avoid the phenomenon of missed and false detection when using white-light endoscopy. In order to improve the lesion detection rate of colorectal cancer patients, this paper proposes a real-time lesion diagnosis model (YOLOv5x-CG) based on YOLOv5 improvement. In this diagnostic model, colorectal lesions were subdivided into three categories: micropolyps, adenomas, and cancer. In the course of convolutional network training, Mosaic data enhancement strategy was used to improve the detection rate of small target polyps. At the same time, coordinate attention (CA) mechanism was introduced to take into account channel and location information in the network, so as to realize the effective extraction of three kinds of pathological features. The Ghost module was also used to generate more feature maps through linear processing, which reduces the stress of learning model parameters and speeds up detection. The experimental results show that the lesion diagnosis model proposed in this paper has a more rapid and accurate lesion detection ability, and the AP value of polyps, adenomas, and cancer is 0.923, 0.955, and 0.87, and mAP@50 is 0.916.