Cargando…
Co-clinical FDG-PET radiomic signature in predicting response to neoadjuvant chemotherapy in triple-negative breast cancer
PURPOSE: We sought to exploit the heterogeneity afforded by patient-derived tumor xenografts (PDX) to first, optimize and identify robust radiomic features to predict response to therapy in subtype-matched triple negative breast cancer (TNBC) PDX, and second, to implement PDX-optimized image feature...
Autores principales: | Roy, Sudipta, Whitehead, Timothy D., Li, Shunqiang, Ademuyiwa, Foluso O., Wahl, Richard L., Dehdashti, Farrokh, Shoghi, Kooresh I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800941/ https://www.ncbi.nlm.nih.gov/pubmed/34328530 http://dx.doi.org/10.1007/s00259-021-05489-8 |
Ejemplares similares
-
Correction to: Co‑clinical FDG‑PET radiomic signature in predicting response to neoadjuvant chemotherapy in triple‑negative breast cancer
por: Roy, Sudipta, et al.
Publicado: (2021) -
Optimal co-clinical radiomics: Sensitivity of radiomic features to tumour volume, image noise and resolution in co-clinical T1-weighted and T2-weighted magnetic resonance imaging
por: Roy, Sudipta, et al.
Publicado: (2020) -
Deep Learning Segmentation of Triple-Negative Breast Cancer (TNBC) Patient Derived Tumor Xenograft (PDX) and Sensitivity of Radiomic Pipeline to Tumor Probability Boundary
por: Dutta, Kaushik, et al.
Publicado: (2021) -
Clinical outcomes with neoadjuvant versus adjuvant chemotherapy for triple negative breast cancer: A report from the National Cancer Database
por: Bagegni, Nusayba A., et al.
Publicado: (2019) -
Neoadjuvant Therapy in Operable Breast Cancer: Application to Triple Negative Breast Cancer
por: Ademuyiwa, Foluso O., et al.
Publicado: (2013)