Cargando…
A Bayesian finite-element trained machine learning approach for predicting post-burn contraction
Burn injuries can decrease the quality of life of a patient tremendously, because of esthetic reasons and because of contractions that result from them. In severe case, skin contraction takes place at such a large extent that joint mobility of a patient is significantly inhibited. In these cases, on...
Autores principales: | Egberts, Ginger, Schaaphok, Marianne, Vermolen, Fred, Zuijlen, Paul van |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801043/ https://www.ncbi.nlm.nih.gov/pubmed/35125668 http://dx.doi.org/10.1007/s00521-021-06772-3 |
Ejemplares similares
-
Stability of a one-dimensional morphoelastic model for post-burn contraction
por: Egberts, Ginger, et al.
Publicado: (2021) -
Stability of a two-dimensional biomorphoelastic model for post-burn contraction
por: Egberts, Ginger, et al.
Publicado: (2023) -
Sensitivity and feasibility of a one-dimensional morphoelastic model for post-burn contraction
por: Egberts, Ginger, et al.
Publicado: (2021) -
Sensitivity of a two-dimensional biomorphoelastic model for post-burn contraction
por: Egberts, Ginger, et al.
Publicado: (2022) -
A mathematical model for the simulation of the contraction of burns
por: Koppenol, Daniël C., et al.
Publicado: (2016)