Cargando…
Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces
Real-world bioelectronics applications, including drug delivery systems, biosensing, and electrical modulation of tissues and organs, largely require biointerfaces at the macroscopic level. However, traditional macroscale bioelectronic electrodes usually exhibit invasive or power-inefficient archite...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801202/ https://www.ncbi.nlm.nih.gov/pubmed/33288948 http://dx.doi.org/10.1038/s41565-020-00805-z |
_version_ | 1784642402471903232 |
---|---|
author | Fang, Yin Prominski, Aleksander Rotenberg, Menahem Y. Meng, Lingyuan Ledesma, Héctor Acarón Lv, Yingying Yue, Jiping Schaumann, Erik Jeong, Junyoung Yamamoto, Naomi Jiang, Yuanwen Elbaz, Benayahu Wei, Wei Tian, Bozhi |
author_facet | Fang, Yin Prominski, Aleksander Rotenberg, Menahem Y. Meng, Lingyuan Ledesma, Héctor Acarón Lv, Yingying Yue, Jiping Schaumann, Erik Jeong, Junyoung Yamamoto, Naomi Jiang, Yuanwen Elbaz, Benayahu Wei, Wei Tian, Bozhi |
author_sort | Fang, Yin |
collection | PubMed |
description | Real-world bioelectronics applications, including drug delivery systems, biosensing, and electrical modulation of tissues and organs, largely require biointerfaces at the macroscopic level. However, traditional macroscale bioelectronic electrodes usually exhibit invasive or power-inefficient architectures, inability to form uniform and subcellular interfaces, or faradaic reactions at electrode surfaces. Here, we develop a micelle-enabled self-assembly approach for a binder-free and carbon-based monolithic device, aimed at large-scale bioelectronic interfaces. The device incorporates a multiscale porous material architecture, an interdigitated microelectrode layout, and a supercapacitor-like performance. In cell training processes, we use the device to modulate the contraction rate of primary cardiomyocytes at the subcellular level to target frequency in vitro. We also achieve capacitive control of the electrophysiology in isolated hearts, retinal tissues, and sciatic nerves, as well as bioelectronic cardiac sensing. Our results support the exploration of device platforms already used in energy research to identify new opportunities in bioelectronics. |
format | Online Article Text |
id | pubmed-8801202 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-88012022022-01-30 Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces Fang, Yin Prominski, Aleksander Rotenberg, Menahem Y. Meng, Lingyuan Ledesma, Héctor Acarón Lv, Yingying Yue, Jiping Schaumann, Erik Jeong, Junyoung Yamamoto, Naomi Jiang, Yuanwen Elbaz, Benayahu Wei, Wei Tian, Bozhi Nat Nanotechnol Article Real-world bioelectronics applications, including drug delivery systems, biosensing, and electrical modulation of tissues and organs, largely require biointerfaces at the macroscopic level. However, traditional macroscale bioelectronic electrodes usually exhibit invasive or power-inefficient architectures, inability to form uniform and subcellular interfaces, or faradaic reactions at electrode surfaces. Here, we develop a micelle-enabled self-assembly approach for a binder-free and carbon-based monolithic device, aimed at large-scale bioelectronic interfaces. The device incorporates a multiscale porous material architecture, an interdigitated microelectrode layout, and a supercapacitor-like performance. In cell training processes, we use the device to modulate the contraction rate of primary cardiomyocytes at the subcellular level to target frequency in vitro. We also achieve capacitive control of the electrophysiology in isolated hearts, retinal tissues, and sciatic nerves, as well as bioelectronic cardiac sensing. Our results support the exploration of device platforms already used in energy research to identify new opportunities in bioelectronics. 2021-02 2020-12-07 /pmc/articles/PMC8801202/ /pubmed/33288948 http://dx.doi.org/10.1038/s41565-020-00805-z Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Fang, Yin Prominski, Aleksander Rotenberg, Menahem Y. Meng, Lingyuan Ledesma, Héctor Acarón Lv, Yingying Yue, Jiping Schaumann, Erik Jeong, Junyoung Yamamoto, Naomi Jiang, Yuanwen Elbaz, Benayahu Wei, Wei Tian, Bozhi Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces |
title | Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces |
title_full | Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces |
title_fullStr | Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces |
title_full_unstemmed | Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces |
title_short | Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces |
title_sort | micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801202/ https://www.ncbi.nlm.nih.gov/pubmed/33288948 http://dx.doi.org/10.1038/s41565-020-00805-z |
work_keys_str_mv | AT fangyin micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT prominskialeksander micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT rotenbergmenahemy micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT menglingyuan micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT ledesmahectoracaron micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT lvyingying micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT yuejiping micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT schaumannerik micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT jeongjunyoung micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT yamamotonaomi micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT jiangyuanwen micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT elbazbenayahu micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT weiwei micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces AT tianbozhi micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces |