Cargando…

Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces

Real-world bioelectronics applications, including drug delivery systems, biosensing, and electrical modulation of tissues and organs, largely require biointerfaces at the macroscopic level. However, traditional macroscale bioelectronic electrodes usually exhibit invasive or power-inefficient archite...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Yin, Prominski, Aleksander, Rotenberg, Menahem Y., Meng, Lingyuan, Ledesma, Héctor Acarón, Lv, Yingying, Yue, Jiping, Schaumann, Erik, Jeong, Junyoung, Yamamoto, Naomi, Jiang, Yuanwen, Elbaz, Benayahu, Wei, Wei, Tian, Bozhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801202/
https://www.ncbi.nlm.nih.gov/pubmed/33288948
http://dx.doi.org/10.1038/s41565-020-00805-z
_version_ 1784642402471903232
author Fang, Yin
Prominski, Aleksander
Rotenberg, Menahem Y.
Meng, Lingyuan
Ledesma, Héctor Acarón
Lv, Yingying
Yue, Jiping
Schaumann, Erik
Jeong, Junyoung
Yamamoto, Naomi
Jiang, Yuanwen
Elbaz, Benayahu
Wei, Wei
Tian, Bozhi
author_facet Fang, Yin
Prominski, Aleksander
Rotenberg, Menahem Y.
Meng, Lingyuan
Ledesma, Héctor Acarón
Lv, Yingying
Yue, Jiping
Schaumann, Erik
Jeong, Junyoung
Yamamoto, Naomi
Jiang, Yuanwen
Elbaz, Benayahu
Wei, Wei
Tian, Bozhi
author_sort Fang, Yin
collection PubMed
description Real-world bioelectronics applications, including drug delivery systems, biosensing, and electrical modulation of tissues and organs, largely require biointerfaces at the macroscopic level. However, traditional macroscale bioelectronic electrodes usually exhibit invasive or power-inefficient architectures, inability to form uniform and subcellular interfaces, or faradaic reactions at electrode surfaces. Here, we develop a micelle-enabled self-assembly approach for a binder-free and carbon-based monolithic device, aimed at large-scale bioelectronic interfaces. The device incorporates a multiscale porous material architecture, an interdigitated microelectrode layout, and a supercapacitor-like performance. In cell training processes, we use the device to modulate the contraction rate of primary cardiomyocytes at the subcellular level to target frequency in vitro. We also achieve capacitive control of the electrophysiology in isolated hearts, retinal tissues, and sciatic nerves, as well as bioelectronic cardiac sensing. Our results support the exploration of device platforms already used in energy research to identify new opportunities in bioelectronics.
format Online
Article
Text
id pubmed-8801202
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-88012022022-01-30 Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces Fang, Yin Prominski, Aleksander Rotenberg, Menahem Y. Meng, Lingyuan Ledesma, Héctor Acarón Lv, Yingying Yue, Jiping Schaumann, Erik Jeong, Junyoung Yamamoto, Naomi Jiang, Yuanwen Elbaz, Benayahu Wei, Wei Tian, Bozhi Nat Nanotechnol Article Real-world bioelectronics applications, including drug delivery systems, biosensing, and electrical modulation of tissues and organs, largely require biointerfaces at the macroscopic level. However, traditional macroscale bioelectronic electrodes usually exhibit invasive or power-inefficient architectures, inability to form uniform and subcellular interfaces, or faradaic reactions at electrode surfaces. Here, we develop a micelle-enabled self-assembly approach for a binder-free and carbon-based monolithic device, aimed at large-scale bioelectronic interfaces. The device incorporates a multiscale porous material architecture, an interdigitated microelectrode layout, and a supercapacitor-like performance. In cell training processes, we use the device to modulate the contraction rate of primary cardiomyocytes at the subcellular level to target frequency in vitro. We also achieve capacitive control of the electrophysiology in isolated hearts, retinal tissues, and sciatic nerves, as well as bioelectronic cardiac sensing. Our results support the exploration of device platforms already used in energy research to identify new opportunities in bioelectronics. 2021-02 2020-12-07 /pmc/articles/PMC8801202/ /pubmed/33288948 http://dx.doi.org/10.1038/s41565-020-00805-z Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Fang, Yin
Prominski, Aleksander
Rotenberg, Menahem Y.
Meng, Lingyuan
Ledesma, Héctor Acarón
Lv, Yingying
Yue, Jiping
Schaumann, Erik
Jeong, Junyoung
Yamamoto, Naomi
Jiang, Yuanwen
Elbaz, Benayahu
Wei, Wei
Tian, Bozhi
Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces
title Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces
title_full Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces
title_fullStr Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces
title_full_unstemmed Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces
title_short Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces
title_sort micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801202/
https://www.ncbi.nlm.nih.gov/pubmed/33288948
http://dx.doi.org/10.1038/s41565-020-00805-z
work_keys_str_mv AT fangyin micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT prominskialeksander micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT rotenbergmenahemy micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT menglingyuan micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT ledesmahectoracaron micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT lvyingying micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT yuejiping micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT schaumannerik micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT jeongjunyoung micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT yamamotonaomi micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT jiangyuanwen micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT elbazbenayahu micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT weiwei micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces
AT tianbozhi micelleenabledselfassemblyofporousandmonolithiccarbonmembranesforbioelectronicinterfaces