Cargando…
Potent Ant Deterrents Emitted from Nematode-Infected Insect Cadavers
Most known species of entomopathogenic nematodes (EPNs) are generalist obligate parasites of insects. They kill their hosts within days after infection and mortality is mainly caused by toxins produced by bacteria that co-infect the hosts and serve as food for the nematodes. EPNs can infect a very b...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801412/ https://www.ncbi.nlm.nih.gov/pubmed/34738202 http://dx.doi.org/10.1007/s10886-021-01320-8 |
Sumario: | Most known species of entomopathogenic nematodes (EPNs) are generalist obligate parasites of insects. They kill their hosts within days after infection and mortality is mainly caused by toxins produced by bacteria that co-infect the hosts and serve as food for the nematodes. EPNs can infect a very broad spectrum of insects and these insects can therefore be expected to have evolved strategies to avoid infection. Indeed, ants are known to avoid feeding on EPN-infected insect cadavers, most likely because they are repelled by semiochemicals that emanate from the cadavers. The source and nature of these repellents are so far unknown. In a series of behavioral and chemical analytical experiments we identified hexadecanal and 2-heptadecanone as two compounds that are emitted by insect larva that are infected by the EPN Steinernema feltiae, but not by uninfected larvae. When spiking honey water with the two semiochemicals, they were confirmed to be highly deterrent to the ant Lasius niger. The environmentally benign hexadecanal and 2-heptadecanone could be employed to ward off ants and possibly other pests. Additional experiments are needed to fully determine their application potential. |
---|