Cargando…
Screening of Important Markers in Peripheral Blood Mononuclear Cells to Predict Female Osteoporosis Risk Using LASSO Regression Algorithm and SVM Method
BACKGROUND: Osteoporosis is a bone disease that increases the patient’s risk of fracture. We aimed to identify robust marker genes related to osteoporosis based on different bioinformatic methods and multiple datasets. METHODS: Three datasets from Gene Expression Omnibus (GEO) were utilized for anal...
Autores principales: | Tang, Hongwei, Han, Qingtian, Yin, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801634/ https://www.ncbi.nlm.nih.gov/pubmed/35110962 http://dx.doi.org/10.1177/11769343221075014 |
Ejemplares similares
-
Parkinson’s Disease Gene Biomarkers Screened by the LASSO and SVM Algorithms
por: Bao, Yiwen, et al.
Publicado: (2023) -
Screening marker genes of type 2 diabetes mellitus in mouse lacrimal gland by LASSO regression
por: Pei, Xiaoting, et al.
Publicado: (2023) -
Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
por: Klosa, Jan, et al.
Publicado: (2020) -
WGCNA, LASSO and SVM Algorithm Revealed RAC1 Correlated M0 Macrophage and the Risk Score to Predict the Survival of Hepatocellular Carcinoma Patients
por: You, Ji-An, et al.
Publicado: (2022) -
A signal recognition particle-related joint model of LASSO regression, SVM-RFE and artificial neural network for the diagnosis of systemic sclerosis-associated pulmonary hypertension
por: Xu, Jingxi, et al.
Publicado: (2022)