Cargando…
Kernel Conversion for Robust Quantitative Measurements of Archived Chest Computed Tomography Using Deep Learning-Based Image-to-Image Translation
Chest computed tomography (CT) is used to screen for lung cancer and evaluate pulmonary and extra-pulmonary abnormalities such as emphysema and coronary artery calcification, particularly in smokers. In real-world practice, lung abnormalities are visually assessed using high-contrast thin-slice imag...
Autores principales: | Tanabe, Naoya, Kaji, Shizuo, Shima, Hiroshi, Shiraishi, Yusuke, Maetani, Tomoki, Oguma, Tsuyoshi, Sato, Susumu, Hirai, Toyohiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801695/ https://www.ncbi.nlm.nih.gov/pubmed/35112080 http://dx.doi.org/10.3389/frai.2021.769557 |
Ejemplares similares
-
Centrilobular Emphysema Is Associated with Pectoralis Muscle Reduction in Current Smokers without Airflow Limitation
por: Maetani, Tomoki, et al.
Publicado: (2023) -
Image classification model based on large kernel attention mechanism and relative position self-attention mechanism
por: Liu, Siqi, et al.
Publicado: (2023) -
AI-Empowered Computational Examination of Chest Imaging for COVID-19 Treatment: A Review
por: Deng, Hanqiu, et al.
Publicado: (2021) -
Unsupervised domain adaptation for the detection of cardiomegaly in cross-domain chest X-ray images
por: Thiam, Patrick, et al.
Publicado: (2023) -
Deep Learning–Based COVID-19 Pneumonia Classification Using Chest CT Images: Model Generalizability
por: Nguyen, Dan, et al.
Publicado: (2021)