Cargando…
Computational Methods for Single-Cell Imaging and Omics Data Integration
Integrating single cell omics and single cell imaging allows for a more effective characterisation of the underlying mechanisms that drive a phenotype at the tissue level, creating a comprehensive profile at the cellular level. Although the use of imaging data is well established in biomedical resea...
Autores principales: | Watson, Ebony Rose, Taherian Fard, Atefeh, Mar, Jessica Cara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801747/ https://www.ncbi.nlm.nih.gov/pubmed/35111809 http://dx.doi.org/10.3389/fmolb.2021.768106 |
Ejemplares similares
-
How does the structure of data impact cell–cell similarity? Evaluating how structural properties influence the performance of proximity metrics in single cell RNA-seq data
por: Watson, Ebony Rose, et al.
Publicado: (2022) -
Computational approaches for network-based integrative multi-omics analysis
por: Agamah, Francis E., et al.
Publicado: (2022) -
Editorial: Advances in methods and tools for multi-omics data analysis
por: Cominetti, Ornella, et al.
Publicado: (2023) -
Interpretable machine learning methods for predictions in systems biology from omics data
por: Sidak, David, et al.
Publicado: (2022) -
Unsupervised neural network for single cell Multi-omics INTegration (UMINT): an application to health and disease
por: Maitra, Chayan, et al.
Publicado: (2023)