Cargando…
Active Learning Accelerates Design and Optimization of Hole-Transporting Materials for Organic Electronics
Data-driven methods are receiving increasing attention to accelerate materials design and discovery for organic light-emitting diodes (OLEDs). Machine learning (ML) has enabled high-throughput screening of materials properties to suggest new candidates for organic electronics. However, building reli...
Autores principales: | Abroshan, Hadi, Kwak, H. Shaun, An, Yuling, Brown, Christopher, Chandrasekaran, Anand, Winget, Paul, Halls, Mathew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802167/ https://www.ncbi.nlm.nih.gov/pubmed/35111731 http://dx.doi.org/10.3389/fchem.2021.800371 |
Ejemplares similares
-
Design of Organic Electronic Materials With a Goal-Directed Generative Model Powered by Deep Neural Networks and High-Throughput Molecular Simulations
por: Kwak, H. Shaun, et al.
Publicado: (2022) -
Editorial: Driving Innovation in Organic Optoelectronic Materials With Physics-Based and Machine-Learning De Novo Methods
por: Winget, Paul, et al.
Publicado: (2022) -
Electronic Structure and Surface Properties of Copper Thiocyanate: A Promising Hole Transport Material for Organic Photovoltaic Cells
por: Odeke, Bonaventure A., et al.
Publicado: (2020) -
Understanding
the Interfaces between Triple-Cation Perovskite and Electron or Hole Transporting Material
por: Pydzińska-Białek, Katarzyna, et al.
Publicado: (2020) -
Molecular Engineering
of Anthracene Core-Based Hole-Transporting
Materials for Organic and Perovskite Photovoltaics
por: Shafiq, Aaida, et al.
Publicado: (2023)